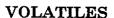
0043951

NARRATIVE

December 16, 1992

Narrative Project: 92-321

Reference No.:


32359-51

Client:

WHC

SDG No.:

3410

The samples were analyzed according to the OLM01.8 Statement of Work. The samples in this SDG were very clean and the analyses non-problematic. Only Methylene Chloride and Acetone were detected in concentrations similar to those found in the blank.

The quality control results were acceptable. All surrogate recoveries were excellent. There was no MS/MSD set for this SDG. The LCS was found to have severe interference from the sample analyzed prior to it, and consequently it is not reported. All samples were analyzed within holding time and the blank was clean. All initial and continuing calibration data are compliant.

SEMIVOLATILES

The samples were analyzed according to the OLM01.8 Statement of Work. The sample was very clean and the analyses non-problematic. Only target analyte detected was Di-n-butylphthalate (260 ppb). DDT was detected as a TIC.

The quality control results were generally acceptable. Surrogate recoveries were within QC limits. All LCS recoveries were excellent. Please note that Din-Octylphthalate was extra in the matrix spiking solution. The results are reported on form I, flagged with "X", but recovery data are not included on form III. All samples were extracted within holding times and the blanks were clean. All initial and continuing calibration data are compliant.

ORGANOCHLORINE PESTICIDE/PCBs

The samples were analyzed according to the OLM01.8 Statement of Work. The sample B07KP6 needed to be analyzed at a 1:10 dilution in order to bring DDT and

10 flan 3dd

NARRATIVE

DDE into calibration range. Both undiluted and diluted analyses are reported. DDT concentration in the sample was around 330 ppb, and DDE at 260 ppb. Both were confirmed by GC/MS. Also DDD was found in the GC/MS analysis of the semivolatile fraction. However, it was not found on column DB-1701, although it was found on DB-608. DDD is not reported as detected in the sample, but it is possible that it is in the sample, and the retention time shifted on column DB-1701 for some reason. If this was the case, the estimated concentration of DDD in the sample would be around 100 ppb.

The sample was extracted within holding time, and the blank was free of contamination. All initial and continuing calibration data are compliant.

The quality control results were generally acceptable. All surrogate recoveries are within QC limits for the sample. However, all recoveries were slightly low (51-59%) for the blank, and Tetrachloro-m-xylene recovery is slightly low (59%) for the LCS on column DB-1701 only. All LCS recoveries were excellent. There was no MS/MSD set for this SDG.

ORGANOCHLORINE HERBICIDES

The samples were analyzed according to SW-846 Method 8150. Sample BO7KP6 contained no herbicides.

The quality control results were acceptable. Surrogate recoveries were acceptable. LCS recoveries were excellent.

Please note that the quantitation column was DB1701 and the confirmation column was DB608. Quantitative information is not rigorously reviewed for the confirmation column. Calibration results were acceptable.

ORGANOPHOSPHORUS PESTICIDES

The samples were analyzed according to SW-846 Method 8140. There were no hits in this group of samples.

A 5 point calibration curve was run for individual component pesticides. A 3 point calibration curve was used for some of the problem compounds. Continuing calibration was high on most of the "A" mix compounds, the "B" mix compounds were generally acceptable.

ip the oran

NARRATIVE

The quality control results were generally acceptable. The surrogate recoveries were approximately 150% for all compounds. Ethion was the surrogate spike, calibrated from the "B" mix. The high bias is probably due to a standards prep error.

LCS, MS and %RPD recoveries were generally acceptable for several compounds. Problems occurred with M.parath, Merphos, Sulprophos, and Coumaphos which are typically problem compounds.

TRPH

The samples were analyzed according to EPA Method 418.1 for TRPH. Please note that these samples were batched with another group of samples. The quality control results were acceptable.

METALS

The samples were analyzed according to the ILM02.1 Statement of Work for the CLP metals list. The GFAA metals were initially analyzed undiluted. Due to low analytical spike recoveries, the GFAA metals were reanalyzed at a dilution of 10 with acceptable results. Only the diluted samples are reported.

The quality control results were acceptable. Pb was detected in the prep blank greater then CRDL, however, the level in the sample is greater than 10 times the amount in the blank and no corrective action was necessary. The soil LCS results were within advisory ranges.

ANIONS

The samples were analyzed according to EPA Method 300.0 for anion. SO₄ required a dilution of 10 times due to high concentration level. All other anions were reported on straight analysis run. For soil, 20 gm of sample was leached into 100 ml of DI Type II water prior to analysis. The quality control results were acceptable. MS and %RPD were within the control limits.

CHROME IV

The samples were analyzed according to EPA Method 7196 for colorimetric Chrome VI analysis. The sample required a 1:5 dilution prior to analysis due to matrix interferences. For soil, 20 gm of sample was leached into 100 ml of DI Type II water prior to analysis. The quality control results were acceptable.

NARRATIVE

NO2/NO3

The samples were analyzed according to EPA Method 353.3 for NO2/NO3. For soil, 20 gm of sample was leached into 100 ml of DI Type II water prior to analysis. The quality control results were acceptable.

John DeWald Project Manager

enclosures

r:\narr\n3410

id fundary and

	1 ***								
Westinghouse Hanford Company	NONCON	iFORM	ANCE	REF	PORT	1. Page	2. Preprinte : : : : :	No. 051	181
						of _	EQA-9	2-11	
3. P. O., W. O., or Jab Control No.	4. System/End Use	- [5. itam/N	Anteri	•	6. Dwg.,/Spec./	Other No.		7. Rav.
N/A	N/A		N/A			N/A			N/A
8. Program/Project/Other					9. Sefety Class	10. ASME Code	items Y	, <u>.</u>	No
North Slope Expedi	ited Response Act	ion			N/A	(If yes, notify aut	harized inspec	tor)	
11. Supplier Name/Address						12. Notification	of Potential O	curance	Required
Data Chem						Г	Yos 🔄 !	ia	
960 West Levoy Salt Lake City	Drive . UT 84123-2547				j	_			
13. Code: Lot/Heat/Serial	14. Lat Size	15. San	ple		16. Qty. Acc.	17. Inspection C			
N/A	N/A	N/	A		N/A		JSpec. □!		
						₩ Other	HC-SD-EN-	AP-09	99, Re <u>v</u> .
18. Item 19. Description	of Nanconformance (list se	nai no. wi	nara appli	cable)	22. Di	sposition, Justific	ation, and inst	ructions	
1. North Slo	oe Expedited Resp	onsei A	tion:	: :	Accept, Lab	sample wet	rod from	dalta	chem-
Sampling	lan WHC-SD-EN-A	P-099	Rev.				Lan WEC-		ATT 000
specified	the chosphorus (reatici	.de	11	Error In-W	oracory met			ELECL.
actual an	alytical method i	s SW-8	<u>46/814</u>	<u>о</u> с	1 1 1 1 1 1		1111		111:
	analytical lab	tiliz e	si in t	e 	-Change tab	Ie 2 page 7			
phosphoru	SIDESTICICE ANALY	SIS	1111	11	pesticides	'i secondico.	1	W-840	/81401
				#					<u>i i , </u>
			1 ; ;						
		1111	<u>i • •</u>		1 1 1 1 1 1 1			<u> </u>	111
	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1	i I	1 1 1 1 1		1 1 1 1	1 1 1 1 1 1 1 1	1::
	1 1 1 1 1 1 1 1 1	, <u>t</u> ,	• :			<u> </u>	: • • •	<u>, ; </u>	1
		1 1				111:		: (;	:
			i i		1:1:	1111.	1 1 :	1 4	
1 1 1 1 1			1 1 .		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	:
		1 1 1	11).	1 j	; · · ; 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1	1 1 1
			111	11			1 1 1		11.
			1111	++					
		1 1 1	1 1 1	+ +	1 1 1 1 1				
		1 1 4 1	1 1 1 1	1 1		1 1 1 1 1 1 .	• • • •	1 1	1 ' '
20. Originator's Signature		Oat	• 1:	23. 0	esign Document Ch	enge Required?			
C. I-me	/.	17/0	100	_	Yes. Coc. No	•			. □ No
21. Cognizant QA Menager		Dat	772		orrective Action Re				
1//_		2 2			Yes, No.	dmioni			□No
Olunin	The same of the sa	12-2	2-92		· · · · · · · · · · · · · · · · · · ·	10			Date
25. Cognizant Engineer	Oate 20	3. Technic	a Kop.		Date	Signature/Org.			Jele
G CA Engineer	Oate	Signatu	re/Org_		Date	Signature/Org.			Date
27.	12/9/92								· · · · · · · · · · · · · · · · · · ·
Accept Reje	et Follow on NC	::R			27	Hand		12/2	1/92
					QA/C?	dragnaei			Date

DON'T SAY IT --- Write It!

DATE: September 1, 1993

TO: File 3410-SCU-080

FROM: Linda J. Dickerson

H4-19

Telephone: 372-2895

cc: 3395-SCU-078

SUBJECT: Validation Summary Final Report

Final validation report for this package is filed with 3395-SCU-078

Westinghouse Hanford Company	CHAIN	CHAIN OF CUSTODY						
Custody Form Initiator <u>J. G.</u>	ucas							
Company Contact Frank G.	ustation	Telephone (569) 376 - / 736						
Project Designation/Sampling Locations								
H-06-H(E)		_						
Ice Chest No. RN #5		Field Lagbaak No. EFL-/03/						
Bill of Lading/Airbill No. <u>251 90</u>		Offsite Property No. <u>W93-U-0002-3</u>						
Method of Shipment Emery								
Shipped to S-Cube 2	Son Diego, CH							
Possible Sample Hazards/Remarks								
•								
	Sample Identification							
BOTKP6 - (1) 120m	45							
(1) 250	ml x G							
(3) /20.	mlac							
☐ Field Transfer of Custody	CHAIN OF POSSESSION	(Sign and Print Names)						
Relinquished by: Jonathan G. Lucas Ri	eceived by:	Date/Time:						
Relinquished by:	eceived by:	Oate/Time:						
Relinquished by:	eceived by:	Date/Time:						
Relinquished by:	eceived by:	Oate/Time: ユ・ベン						
·	voice exception	1114 75 11						
	Final Sample Disposition							
Disposal Method:	isposed by:	Date/Time:						
Comments:		*) * 400 !=.						
we there with them	y a man transition	2. 305/h 2-6000-407(12/90)						

le form, or a six

w w		rtinghouse ford Company		SAMPLE ANALYSIS REQUEST
Callector	C. x	1. Kow	leu	Date 11-2-92 (ariboha)
Company Co	ntacı	Franc	E Cu.	STATION Telephone (509) 376-1736
Sample Number	*	Date Collected	Time Collected	Number and Type of Sample Containers/Analysis Requested
BOTKPL	S	11-2-92	1100/1120	/ 120 ml alass septum - VOA (CLP)
				250 ml amber alass - Sem; 1/04 ('CLP)
···			1	PCB/Posts (CLD), phoschorus Posts (2140)
				Herbicides (3:50)
		***	`	120 ml amion alass - ICP metals (CLA), A4 metals
			/	(As, Pb, Se, TI-CLA), Ha (CLA)
				120 ml amber alass - Anions CF, CI. POU. SOU- EMEDO
				(NO2, NO3-EPA 353.3). Chromium VICEAR 219.5
			\	120 ml - TPH (EPA 418.1)
		<u> </u>		
		···		
	i			
,	!			
		 · · ·	<u> </u>	
<u> </u>		···		
				
··				
*Type of Sam	nie	A = Air		L = Liquid SE = Sediment T = Tissue X = Other
- I ha at atti	, w		ım Liquids	O = Oil SL = Sludge W = Water
		DS = Dn	ım Solids	S = Sail SO = Salid WI = Wipe
Field Informa	ition	NIA	***	
		/		

Special Hand	lling a	and/or Storag	e <u>Cooj</u>	400
Possible San	iple H	lazards		

16 Hay 12 8 34

A-6000-406 (06/91)

SDG Memo/Sample Summary

Client Name:

WESTINGHOUSE HANFORD CO.

Date:

4 Dec 1992

Project Name:

92-321

Update No.:

SDG No.:

3410

Work Order No.:

32359-51

Project Manager: J. DEWALD

Mail Date:

Client Samp No.	S-Cubed Samp No.	Data Rovd	Date Samp	Matrix	ANIONS	CRVI	FURNCLP	HERBEXT	насгь	ICPCLP	NO2/NO3	ОСРОЦМ	OPP8140	SVOAOLM	ТЯРН	VOAGLM
Воткре	3410-01	11-6-1992	11-2-1992	SOIL	X	Х	X	х	Х	Х	Х	X	X	X	X	X

(X) = Non-Billable Sample

[] III PLEASE TYPE OR USE BALL POINT PEN. BEAR DOWN FIRMLY! KEEP MARKS WITHIN BOXES TO ASSURE ACCURACY 0 The form NO. 60001-45

<u>!</u>				1	
FORM OF PAYMENT		مناعد والمناطق المناطق والمناطق والمناطق والمناطق المناطقة والمناطقة والمناط	STRVICTS **	griti restrict to	
Check GIN []	rccop		UNITED STATES , CALLEY Same Day Standard	Phis Doraneus Districts	SIIPT.
Bill to Bill to Farty Shippor Carisopres Billing		MERY A		lared Custons Clearance Delivery Delivery	TAB
E-85U281585	WORLD	VIDE Company	Date Orion	100	
From:			11-04-9 PSC 251	900658 9 B	
H	T /ENN\ 376 EEEE	То.		Tauli Desi Galeway	•
WESTINGHOUSE SHIPPING DEP	T (2021 3 v 0 = 0 0 0 0	JOHN-DEWAUD		1.15	4
WESTINGHOUSE HANFORD		S=CUBED		, ,	1
BLDG 1163			Hold for	trans winitivina	<u>></u>
2355 STEVENS DRIVE	Canada 🗀	3398_CARMEL_MTR	OAD Pick Up	their other poles	COPY
RICHLAND	WA H	SAN_DIEGO	C4	Shipper, meladera	
Customer's Reference Numbers		Consignee's Account Num		Internet traded to temperature to the temperature t	PACKAGE
W81300 PD42A W93-0-0002#3	8 99332 Dimensions Total Deces	1-1	92121-1095	and menopuls of dates.	ฐั
	es L W H	GALL.	THATON OF TAILS	Declared Value	à
SOIL SAMPLES	20 14 1/2	1	800 443 6379)	 	iń
807KP6	1 ' ' ' 1 1	22	2519006589	* } '	N.
Pientoks	The street of th	Emery		i	SIG
Ş	or shipments within the United States Shipper	~ IAD			CONSIGNEE
////	or shipments within the or control of the control o	Park Shares St. Transfer St.	क्षा के किन्द्र किन क्षा किन		O
Sopola XALLO ALLA	he area to the right, apply. 9X12	12X15 .:	$\Lambda + I$		
/ Internacional Shapments That Party Commodity Code Account Number	Their Party Account thimbe		/		
Vice mandatory for Domicile I find Party Bit	T IFI		H 11/-		
Internationa	l Customs Value International	Insurance			
Base Charge	Other Change	Authorize at Oxyen			
Rotal transpo	ortation Charges Other Charges		and Conditions on Back		
·4	. 1 1	l ki		1	

1

MAXWELL s-CUBED Division

Lot No. 3410

Sample Log-In Sheet

Revision No.: 0

Airbill No.	by (Sig): <u>(Lancé C</u> 2,5/ 90065 5. 32359-51			Custody S Chain of C Client Forn	ustody Pr	ese			ct/	Q _V	Tı	urna	rou		equ	ired	: 30	D/	λY	3 (RCRA)
se No./Pro	ject Code: 92-351 3,	21	SDG	No.: 3410)		VS		CLP	ķ	۵	۵.	203	F 6		OLM		J.M	All	Notes
ubed nple No.	Sample Identification	Samp. Type	No. Cont.	Samp Stor.	Samp Cond	%™	ANIO	CRV	FURN	HERB	HGCL	וכייכו	NOZJ	OPPR140	Has	SVOA	TRPH	VOAC	Info Agree	Notes
10-01	В07КР6	SOIL	1/1/3	R9/GC/WA		х	х	х	х	х	х	X	X	хх	X	х	Х	х		
						_				_	_	_	_		_	_				
						-	_	_		-	\dashv	_	+	-	+	-		_		
***								_				\dashv	+		+-	-				
				<u> </u>		-	-	-				\dashv	\dashv		-	╁				
						-	\vdash	\vdash	-	-	\dashv	-	+	+	╁	╁╴	-			
	,					┢	-	-				+	+	-	╁	+	-			<u> </u>
						┞	\vdash		-			- -	7	<u> </u>	╫	\dagger	\vdash			
			 			┢	T	 					7		1					
						Γ														
•																				
		<u> </u>																		
Vater	Container Types	Soil =	Soil/Se	ediment/S	ludae				W.	atei		MS	MS	D.						
Vater -			= Aqu		laago				Sa					D		-	-			12 L
Soil				lqueous L Soil Solid	iquid				SE			Con		7	J.	N	_	Re	view	JDING.

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab Name: S-CUBED Contract: 32359-51

Lab Code: S3 Case No.: 92-321 SAS No.: SDG No.: 3410

Matrix: (soil/water) SOIL Lab Sample ID: 3410-01

Sample wt/vol: 5.00 (g/ml) G Lab File ID: A1110061

Level: (low/med) LOW Date Received: 11/05/92 Moisture: not dec. 5.67 %Moisture: not dec. 5.67 Date Analyzed: 11/10/92 GC Column: PACK ID: 2.00 (mm) Dilution Factor: 1.00 Soil Extract Volume: (uL) Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/kg Q

74-87-3	Chloromethane	11	υ
74-83-9	Bromomethane	11	ប
75-01-4	Vinyl Chloride	11	υ
75-00-3	Chloroethane	11	lυ
75-09-2	Methylene Chloride	6	JВ
67-64-1	Acetone	7	JB
75-15-0	Carbon Disulfide	11	ַ ט '
75-35-4	1,1-Dichloroethene	11.	ប
75-34-3	1,1-Dichloroethane	11	ਹ
540-59-0	1,2-Dichloroethene (total)	11	ប
67-66-3	Chloroform	11	υ
107-06-2	1,2-Dichloroethane	11	ប
78-93-3	2-Butanone	11	ប
71-55-6	1,1,1-Trichloroethane	11	U
56-23-5	Carbon Tetrachloride	11.	ប
75-27-4	Bromodichloromethane	11	U
78-87-5	1,2-Dichloropropane	11.	ប
10061-01-5	cis-1,3-Dichloropropene	11	ש
79-01-6	Trichloroethene	11	U
124-48-1	Dibromochloromethane	11	ប
79-00-5	1,1,2-Trichloroethane	11	U
71-43-2	Benzene	1.1	U
10061-02-6	trans-1,3-Dichloropropene	11	υ
75-25-2	Bromoform	11	U
108-10-1	4-Methyl-2-pentanone	11	ט
591-78-6	-	11	ប
127-18-4		11	U
79-34-5	1,1,2,2-Tetrachloroethane	11	ប
108-88-3	Toluene	11	ប
108-90-7		11	U
100-41-4	Ethyl Benzene	11	ប
100-42-5	Styrene	11.	U
1330-20-7	Xylene (total)	11	υ
			1
		<u> </u>	J

Environmental Protection Agency, CLP Sompte Management Office. P. O. Box 818, Alexandra, Virginia 22313 703/567-2460 Sample Number BCJ-INPG

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/l ox/og/kg
1	NO TO'S FOUND	VOA		
2				
3				
4.				
5				
6.				
7.				<u> </u>
9.				
11				
12				
13				
14				
15				
16				
17				
18				
20 21	·			
22.				
23				
24				,
1				
26				
27				
28				
29				
30				

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab Name: S-CUBED Contract: 32359-51 Matrix: (soil/water) SOIL Lab Sample ID: 3410-01 Sample wt/vol: 30 Lab File ID: DN12061 (g/ml) G Level: (low/med) LOW Date Received: 11/05/92 %Moisture: 5.67 decanted: (Y/N) N Date Extracted: 11/09/92

Concentrated Extract Volume: 2000.00 (uL) Date Analyzed: 11/12/92 Injection Volume: 1.00 (u/L) Dilution Factor: 1.00 GPC Cleanup: (Y/N) Y pH: 8.95

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/kg	Q

108-95-2	
111-44-4 bis(2-Chloroethyl)ether 700 U 95-57-8 2-Chlorophenol 700 U 541-73-1 1,3-Dichlorobenzene 700 U 106-46-7 1,4-Dichlorobenzene 700 U 95-50-1 1,2-Dichlorobenzene 700 U 95-48-7 2-Methylphenol 700 U 108-60-1 2,2'-oxybis(1-Chloropropane) 700 U 106-44-5 4-Methylphenol 700 U 621-64-7 N-Nitroso-di-n-propylamine 700 U 67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	
95-57-8 2-Chlorophenol 700 U 541-73-1 1,3-Dichlorobenzene 700 U 106-46-7 1,4-Dichlorobenzene 700 U 95-50-1 1,2-Dichlorobenzene 700 U 95-48-7 2-Methylphenol 700 U 108-60-1 2,2'-oxybis(1-Chloropropane) 700 U 106-44-5 4-Methylphenol 700 U 621-64-7 N-Nitroso-di-n-propylamine 700 U 67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	l
541-73-1 1,3-Dichlorobenzene 700 U 106-46-7 1,4-Dichlorobenzene 700 U 95-50-1 1,2-Dichlorobenzene 700 U 95-48-7 2-Methylphenol 700 U 108-60-1 2,2'-oxybis(1-Chloropropane) 700 U 106-44-5 4-Methylphenol 700 U 621-64-7 N-Nitroso-di-n-propylamine 700 U 67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	
106-46-7 1,4-Dichlorobenzene 700 U 95-50-1 1,2-Dichlorobenzene 700 U 95-48-7 2-Methylphenol 700 U 108-60-1 2,2'-oxybis(1-Chloropropane) 700 U 106-44-5 4-Methylphenol 700 U 621-64-7 N-Nitroso-di-n-propylamine 700 U 67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	
95-48-7 2-Methylphenol 700 U 108-60-1 2,2'-oxybis(1-Chloropropane) 700 U 106-44-5 4-Methylphenol 700 U 621-64-7 N-Nitroso-di-n-propylamine 700 U 67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	ŀ
95-48-7 2-Methylphenol 700 U 108-60-1 2,2'-oxybis(1-Chloropropane) 700 U 106-44-5 4-Methylphenol 700 U 621-64-7 N-Nitroso-di-n-propylamine 700 U 67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	1
108-60-1 2,2'-oxybis(1-Chloropropane) 700 U 106-44-5 4-Methylphenol 700 U 0 0 0 0 0 0 0 0	
106-44-5	
621-64-7 N-Nitroso-di-n-propylamine 700 U 67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	J
67-72-1 Hexachloroethane 700 U 98-95-3 Nitrobenzene 700 U 78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	
78-59-1 Isophorone 700 U 88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	
88-75-5 2-Nitrophenol 700 U 105-67-9 2,4-Dimethylphenol 700 U	
105-67-9 2,4-Dimethylphenol 700 U	- 1
111-91-1 bis(2-Chloroethoxy)methane 700 II	
120-83-2	
120-82-1 1,2,4-Trichlorobenzene 700 U	
91-20-3 Naphthalene 700 U	
106-47-8	
87-68-3 Hexachlorobutadiene 700 U	
59-50-7 4-Chloro-3-methylphenol 700 U	
91-57-6 2-Methylnaphthalene 700 U	
77-47-4 Hexachlorocyclopentadiene 700 U	- 1
88-06-2 2,4,6-Trichlorophenol 700 U	
95-95-4 2,4,5-Trichlorophenol 1700 U	
91-58-7 2-Chloronaphthalene 700 U	- 1
88-74-4 2-Nitroaniline 1700 U	ł
131-11-3 Dimethylphthalate 700 U	-
208-96-8 Acenaphthylene 700 U	
606-20-2 2,6-Dinitrotoluene	ł
99-09-2 3-Nitroaniline 1700 U	
83-32-9 Acenaphthene 700 U	

EPA SAMPLE NO.

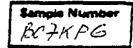
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab Name: S-CUBED 32359-51 Contract:

Matrix: (soil/water) SOIL Sample wt/vol: 30 (g/ml) G Lab Sample ID: 3410-01 Lab File ID: DN12061 Level: (low/med) LOW %Moisture: 5.67 decanted: (Y/N) N Date Received: 11/05/92 Date Extracted: 11/09/92

Concentrated Extract Volume:2000.00 (uL)Date Analyzed: 11/12/92 Injection Volume: 1.00 (u/L) Dilution Factor: 1.00


GPC Cleanup: (Y/N) Y pH: 8.95

CONCENTRATION UNITS: CAS NO. COMPOUND Q

(ug/L or ug/Kg) ug/kg

			
51-28-5	2,4-Dinitrophenol	1700	ט
100-02-7	4-Nitrophenol	1700	ט
132-64-9	Dibenzofuran	700	ן די
121-14-2	2,4-Dinitrotoluene	700	ប
84-66-2	Diethylphthalate	700	U
7005-72-3	4-Chlorophenyl-phenyl ether	700	U
86-73-7	Fluorene	700	ן די
100-01-6	4-Nitroaniline	1700	U
534-52-1	4,6-Dinitro-2-methylphenol	1700	[U]
86-30-6	N-Nitrosodiphenylamine (1)	700	U
101-55-3	4-Bromophenyl-phenylether	700	[U
118-74-1	Hexachlorobenzene	700	U
87-86-5	Pentachlorophenol	1700	ਹ
85-01-8	Phenanthrene	700	ן [[
120-12-7	Anthracene	700	ן די
86-74-8	Carbazole	700	ט
84-74-2	Di-n-butylphthalate	260	J
206-44-0	Fluoranthene	700	ן ש
129-00-0	Pyrene	700	ן ט
85-68-7	Butylbenzylphthalate	700	ן ט
91-94-1	3,3'-Dichlorobenzidine	700	U
56-55-3	Benzo(a)anthracene	700	U
218-01-9	Chrysene	700	U
117-81-7	Bis(2-Ethylhexyl)phthalate	700	ן ט
117-84-0	Di-n-octylphthalate	700	ן ט
205-99-2	Benzo(b) fluoranthene	700	Įυ
207-08-9	Benzo(k) fluoranthene	700	U
50-32-8	Benzo(a) pyrene	700	ਹ
193-39-5	Indeno(1,2,3-cd)pyrene	700	T
53-70-3	Dibenz(a,h)anthracene	700	ן ט
191-24-2	Benzo(g,h,i)perylene	700	ט ו
		1	
		1	
		<u> </u>	<u> </u>

Environmental Prosection Agency. CLP Sample Monagement Office. P. O. Box 818. Alexandria, Virginia 22313 703/567-2460

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT of Scan	Estimated Concentrated (ug/1 or ug/kg
1.00/23-42-2	2-PENTANONE 4-HYDROXY-4-METH	BNA	49	BRC TBA
2 50-29-3	DDT	¥	1293	310 JN
3			 	<u> </u>
4				<u> </u>
5			 -	
6				
7.			 	
8 -				
10		···		
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
27	<u> </u>			
22				
3				
5				
s				
7				
8.				
9				
0.				

PESTICIDE SOIL ORGANICS ANALYSIS DATA SHEET

Lab Name: S-CUBED Contract: 32359-51

Lab Code: S3 Case No.: 92-321 SAS No.: SDG No.: 3410
Matrix: (soil/water) SOIL Lab Sample ID: 3410-01
Sample wt/vol: 30 (g/ml) G Lab File ID: E1130-2DB608031

%Moisture: 5.67 decanted: (Y/N) N Date Received: 11/05/92 Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 11/09/92 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 12/01/92 Injection Volume: 1.00 (uL) Dilution Factor: 1.00 GPC Cleanup: (Y/N) Y pH: 8.95 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/kg

<u></u>			
319-84-6	alpha-BHC	1.80	U
319-85-7	beta-BHC	1.80	ט
319-86-8	delta-BHC	1.80	ן די
58-89-9	gamma-BHC (Lindane)	1.80	ן ד
76-44-8	Heptachlor	1.80	ע
309-00-2	Aldrin	1.80	ן ט ו
1024-57-3	Heptachlor epoxide	1.80	ប
959-98-8	Endosulfan I	1.80	ן ט
60-57-1	Dieldrin	3.50	ן מן
72-55-9	4,4'-DDE	262	EC
72-20-8	Endrin	3.50	<u></u>
33213-65-9	Endosulfan II	3.50	Ŭ
72-54-8	4,4'-DDD	3.50	ļ υ
1031-07-8	Endosulfan sulfate	3.50	الُّ
50-29-3	4,4'-DDT	341	EC
72-43-5	Methoxychlor	18.0	Ū
53494-70-5	Endrin ketone	3.50	ן ס
7421-36-3	Endrin Aldehyde	3.50	ן ט
5103-71-9	alpha-Chlordane	1.80	ا تا
5103-74-2	gamma-Chlordane	1.80	ا ت
8001-35-2	Toxaphene	180	انّ
12674-11-2	Aroclor-1016	35.0	ا تا
11104-28-2	Aroclor-1221	71.0	Ŭ
11141-16-5	Aroclor-1232	35.0	lΰ
53469-21-9	Aroclor-1242	35.0	lΰ
12672-29-6	Aroclor-1248	35.0	١ŏ
	Aroclor-1254	35.0	ا
11096-82-5		35.0	ŭ
=====================================		33.0	
			1
<u> </u>			L

PESTICIDE SOIL ORGANICS ANALYSIS DATA SHEET

Lab Name: S-CUBED Contract: 32359-51
Lab Code: S3 Case No.: 92-321 SAS No.: SDG No.: 3410
Matrix: (soil/water) SOIL Lab Sample ID: 3410-01DL

Matrix: (soil/water) SOIL

Sample wt/vol: 30 (g/ml) G

Moisture: 5.67 decanted: (Y/N) N

Extraction: (SepF/Cont/Sonc) SONC

Lab Sample ID: 3410-01DL

Lab File ID: E1130-2DB608065

Date Received: 11/05/92

Date Extracted: 11/09/92

Concentrated Extract Volume: 10000 (uL) Date Analyzed: 12/04/92 Injection Volume: 1.00 (uL) Dilution Factor: 10.00 GPC Cleanup: (Y/N) Y pH: 8.95 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/kg Q

319-84-6 alpha-BHC 319-85-7 beta-BHC	18.0	ט
319-85-7 beta-BHC		
	18.0	ប
319-86-8 delta-BHC	18.0	บิ
58-89-9 gamma-BHC (Lin		Ū
76-44-8 Heptachlor	18.0	ט
309-00-2 Aldrin	18.0	<u>"</u>
1024-57-3 Heptachlor epo		ן מ
959-98-8 Endosulfan I	18.0	ΰ
60-57-1 Dieldrin	35.0	lu l
72-55-9 4,4'-DDE	264	pc
72-20-8 Endrin	35.0	ן ט
33213-65-9 Endosulfan II	35.0	ן ט
72-54-8 4,4'-DDD	35.0	ן ט
1031-07-8 Endosulfan sul	fate 35.0	ן ש
50-29-3 4,4'-DDT	329	DC
72-43-5 Methoxychlor	180	ן ט
53494-70-5 Endrin ketone	35.0	ן די
7421-36-3 Endrin Aldehyd		U
5103-71-9 alpha-Chlordar	e 18.0	U
5103-74-2 gamma-Chlordar	e 18.0	ן די
8001-35-2 Toxaphene	1800	ן ש
12674-11-2 Aroclor-1016	350	U
11104-28-2 Aroclor-1221	710	[U
11141-16-5 Aroclor-1232	350	U
53469-21-9 Aroclor-1242	350	ี ซ
12672-29-6 Aroclor-1248	350	σ
11097-69-1 Aroclor-1254	350	ប
11096-82-5 Aroclor-1260	350	ប

--/-2

HERBICIDE ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab Name: S-CUBED	Contract:	32359-51
Lab Code: S3 Case No.	: 92-321 SAS No.	: SDG No.: 3410
Matrix: /goil/water) col	T T_L	O1- TD. 2410 01

Matrix: (soil/water) SOIL Lab Sample ID: 3410-01 Sample wt/vol: 5 (g/ml) G Lab File ID: H1120-4DB1701077

%Moisture: 5.67 decanted: (Y/N) N Date Received: 11/05/92
Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 11/16/92
Concentrated Extract Volume: 5000 (uL) Date Analyzed: 11/22/92
Injection Volume: 1.00 (uL) Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 8.95 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/kg	Q

94-75-7 94-82-6 93-76-5 93-72-1 88-85-7 120-36-5 1918-00-9 75-99-0 93-65-2 94-74-0	2,4-D 2,4-DB 2,4,5-T 2,4,5-TP Dinoseb Dichlorprop Dicamba Dalapon MCPP MCPA	105 52.6 26.3 26.3 105 52.6 52.6 26300 26300	ממממממממ

1D

PESTICIDE SOIL ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab Name: S-CUBED	Contract:	32359-51
	92-321 SA	S No.: SDG No.: 3410
Matrix: (soil/water) SOIL		Lab Sample ID: 3410-01
Sample wt/vol: 30 (g/ml		Lab File ID: A1124-6DB1A021
%Moisture: 5.67 decanted	i: (Y/N) N	Date Received: 11/05/92
Extraction: (SepF/Cont/Sono) SONC	Date Extracted: 11/09/92
Concentrated Extract Volume	e: 10000 (uL)	Date Analyzed: 11/25/92
Injection Volume: 1.00	(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH:	8.95	Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/kg	Q

115-90-2 13194-48-4 150-50-5 2921-88-2 298-00-0 298-02-2 298-04-4 299-84-3 300-76-5 327-98-0 333-41-5 34843-46-4 35400-43-2 55-38-9 56-72-4 62-73-7 7786-34-7 8065-48-3 8065-48-3 86-50-0 961-11-5	Bolstar(Sulprophos) Fenthion Coumaphos Dichlorvos Mevinphos Dematon-O	53.0 21.2 21.2 10.6 10.6 10.6 21.2 21.2 21.2 21.0 10.6 10.6 42.4 42.4 42.4 53.0 53.0	מממממממממממממממממממ

Analyte:	TRPH			Smpl Aliquot:	0.020 /	Kg or L		
Method:	418.1			Final Volume:	0.1	تي ا		
Technique:	IR Spec.							
DATE:	11/10/92			Concs:	p.p.m.			
Analyst:	CF			Reagent #1	20			
Instr:	P&E IR Spec.			#2	40			
Case:	_			#3	80			
Lot(s):	3392,97,99,3409			#4	160			
				#5	300			
Standards				#6				
Source:	S-CUBED/EL42	40						
Corr. Coef.	0.99990							
				Detection Limit	20mg/kg			
Std.	Abs	Conc						
Blank	0	0						
#1	0.03	20						
#2	0.062	40						
#3	0.126	80						
#4	0.245	160						
#5	0.46	300						
#6								
								(madea)
S_Cubed	Client) be	Cona	Dii	SAMDI E	Detection	OT _a	(mg/kg)
S-Cubed	Client	Abs.	Conc.	Dil.	SAMPLE	Detection	% Mois	Final
Sample ID	Client Sample ID		(ug/ml)	Factor	Conc.	Limit	% Mois.	Final CONC.
Sample ID EBS1109A		0	(ug/ml) 0.0000	Factor 1	Conc. 0.0000	Limit 20		Final CONC.
Sample ID EBS1109A LCSS1109A		0 0.205	(ug/ml) 0.0000 133.2923	Factor 1	Conc. 0.0000 666,4616	Limit 20 20		Final CONC. () 666
Sample ID EBS1109A LCSS1109A EBS1106B		0 0.205 0	(ug/ml) 0.0000 133.2923 0.0000	Factor 1 1 1	Conc. 0.0000 666,4616 0.0000	Limit 20 20 20		Final CONC. 0 666 0
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B	Sample ID	0 0.205 0 0.203	(ug/ml) 0.0000 133.2923 0.0000 131.9919	Factor 1 1 1 1	Conc. 0.0000 666,4616 0.0000 659,9596	Limit 20 20 20 20 20	Mois.	Final CONC. () 666 () 660
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX	Sample ID S1454070	0 0.205 0 0.203 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000	Limit 20 20 20 20 20 20 20	Mois.	Final CONC. 0 666 0 660
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX	Sample ID S1454070 22A10-4	0 0.205 0 0.203 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000	Limit 20 20 20 20 20 20 20 20	Mois. 5.9 15.1	Final CONC. 0 666 0 660 0 0
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01RX	Sample ID S1454070 22A10-4 S1459180	0 0.205 0 0.203 0 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318	Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 0.0000 500.6590	Limit 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29	Final CONC. 0 666 0 660 0 0
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX	Sample ID S1454070 22A10-4 S1459180 S1459180REP	0 0.205 0 0.203 0 0 0.154 0.169	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849	Factor 1 1 1 1 1 1 1 1	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 0.0000 500.6590 549.4245	Limit 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29	Final CONC. 0 666 0 660 0 0
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01RX 3392-01REPR	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260	0 0.205 0 0.203 0 0 0.154 0.169	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667	Factor 1 1 1 1 1 1 1 1 1 1	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 0.0000 500.6590 549.4245 263.3336	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5	Final CONC. 0 666 0 660 0 605
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01RX 3392-01REPR 3409-01 3409-02	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454578	0 0.205 0 0.203 0 0 0.154 0.169	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725	Factor 1 1 1 1 1 1 1 1	0.0000 666.4616 0.0000 659.9596 0.0000 0.0000 500.6590 549.4245 263.3336 354.3625	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9	Final CONC. 0 666 0 660 0 605 664 308
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01RX 3392-01REPR 3409-01	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667	Factor 1 1 1 1 1 1 1 1 1 1 1	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 0.0000 500.6590 549.4245 263.3336	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5	Final CONC. 0 666 0 660 0 605 664 308 416
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01REPR 3409-01 3409-02 3409-03	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454578 S1454261	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0000 666.4616 0.0000 659.9596 0.0000 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9 8.33	Final CONC. 0) 666 0 660 0 605 664 308 416
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01REPR 3409-01 3409-02 3409-03 3409-04	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454261 S1454261 S1454264	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9 8.33 10.04	Final CONC. 0 666 0 0 0 605 664 308 416 0 0
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01RX 3409-01 3409-02 3409-03 3409-04 3409-05	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454261 S1454264 S1454257	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000 0.0000 150.1977	Factor 1 1 1 1 1 1 1 1 1 1 1 5	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9 8.33 10.04 10.3	Final CONC. 0 666 0 660 0 605 664 308 416 0 4186
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01RX 3392-01REPR 3409-01 3409-02 3409-03 3409-04 3409-05 3409-06	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454261 S1454264 S1454257 S1454258	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109 0 0.231	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000 0.0000 150.1977 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 5	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000 0.0000 3754.9424 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 14.5 14.9 8.33 10.04 10.3 6.94	Final CONC. 0 666 0 660 0 605 664 308 416 0 4186
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01REPR 3409-01 3409-02 3409-04 3409-05 3409-06 3409-07	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454261 S1454261 S1454257 S1454258 S1454449	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109 0 0.231 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000 0.0000 150.1977 0.0000 65.6709	Factor 1 1 1 1 1 1 1 1 1 1 1 5	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000 0.0000 3754.9424 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9 8.33 10.04 10.3 6.94 9.87	Final CONC. 0 666 0 0 0 0 605 664 308 416 0 0 4186 0 364
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01REPR 3409-01 3409-02 3409-03 3409-04 3409-05 3409-06 3409-07 3409-08	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454261 S1454261 S1454264 S1454257 S1454258 S1454449 S1454255	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109 0 0.231 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000 0.0000 150.1977 0.0000 65.6709 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 5	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000 0.0000 3754.9424 0.0000 328.3543 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9 8.33 10.04 10.3 6.94 9.87 9.7	Final CONC. 0 666 0 660 0 0 605 664 308 416 0 4186 0 364 0
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01RX 3392-01REPR 3409-01 3409-02 3409-03 3409-04 3409-05 3409-06 3409-07 3409-08	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454261 S1454261 S1454264 S1454257 S1454258 S1454449 S1454255	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109 0 0.231 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000 0.0000 150.1977 0.0000 65.6709 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 5	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000 0.0000 3754.9424 0.0000 328.3543 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9 8.33 10.04 10.3 6.94 9.87 9.7	Final CONC. 0 666 0 660 0 0 605 664 308 416 0 4186 0 364 0
Sample ID EBS1109A LCSS1109A EBS1106B LCSS1106B 3397-04RX 3399-04RX 3392-01REPR 3409-01 3409-02 3409-03 3409-04 3409-05 3409-07 3409-07 3409-08 3409-09	Sample ID S1454070 22A10-4 S1459180 S1459180REP S1454260 S1454261 S1454264 S1454257 S1454258 S1454449 S1454255 S1454076	0 0.205 0 0.203 0 0 0.154 0.169 0.081 0.109 0 0.231 0 0.101 0 0	(ug/ml) 0.0000 133.2923 0.0000 131.9919 0.0000 0.0000 100.1318 109.8849 52.6667 70.8725 0.0000 0.0000 150.1977 0.0000 65.6709 0.0000	Factor 1 1 1 1 1 1 1 1 1 1 1 5	Conc. 0.0000 666.4616 0.0000 659.9596 0.0000 500.6590 549.4245 263.3336 354.3625 0.0000 0.0000 3754.9424 0.0000 328.3543 0.0000 0.0000	Limit 20 20 20 20 20 20 20 20 20 20 20 20 20	5.9 15.1 17.29 17.29 14.5 14.9 8.33 10.04 10.3 6.94 9.87 9.7 13.31	Final CONC. 0 666 0 660 0 605 664 308 416 0 4186 0 364 0 0

.____

U.S. EPA - CLP

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.

_ _	ระบ			. ~ ~ .	a ==	3410-01
ub Code: S3			Contract: 32	؛ ځ ک	9-5I	
	Cas	se No.: 922	SAS No.:			SDG No.: 3410
atrix (soil/wa	ater): SOIL	_		Lal	b Samp	le ID: 3410-01_
evel (low/med)): LOW_	-		Dai	te Rec	eived: 11/05/92
Solids:	_94.3	3				
Cor	ncentration	Units (ug/	L or mg/kg dry	7 W	eight)	: MG/KG
	CAS No.	Analyte	Concentration	C	Q	М
	7429-90-5	Aluminum	13400			P
	7440-36-0	Antimony -	12.7	שו		P
	7440-38-2	Arsenic -	10.6	в		' F-
	7440-39-3		157	-		F P P
	7440-41-7			B		P_
	7440-43-9	Cadmium_	0.64			P
	7440-70-2		16100			P_ P_
	7440-47-3	Chromium_	21.0			P_
	7440-48-4		14.6			P_ P_ P_ P_ P_
	7440-50-8		27.1			_ P_
	7439-89-6		27800	_ .		_[P]
	7439-92-1		29.9	_ .		_ <u>F</u> _
	7439-95-4		7700			- <u>P</u> _
		Manganese	571	<u>-</u> -		- <u>P_</u>
	7439-97-6		0.11			CV
		Nickel	20.8			P_
	7440-09-7	3	2330	-		- =-
		Selenium_	6.4			- =
	7440-22-4 7440-23-5		7.0	╏╤╣╴		- = -
	7440-23-5	Thallium	6.4			P
	7440-62-2	Vanadium	52.2			- _ _
	7440-66-6	Zinc	96.1	-		p p
	7440 00 0	DIIIC		1-1		- - -
				<u> </u>		
olor Before:		Clari	ty Before:			Texture:
olor After:		Clari	ty After:			Artifacts:
omments: BO7KP6						
	-					

1000

FORM I - IN

7/88

GABORATORY:	S-GUBED	DATA REVIEWER: ON 12/02/92
CLIENT:	AHC	PROJECT REVIEWER:
PROJECT:	92-359	GHARGE #: 32359-51
LOT #:	3410	DATE SAMPLED: 11-02-92
814:	AHE34108	DATE RECEIVED: 11-05-92
DISK #:	ANI1123	PREP DATE: 11-09-92
METHOD NO.:	300.0	DATE ANALYZED: 11-13-92
UNIT:	NG/KG	SAMPLE TYPE: SOIL

					_4.		4		.		_					.	
LAB ID	!	F	;		!			Br		NO3	1	P04	804	1	,	, [
13410-01	;	1.96	+·	10.9	-+·	41-11 (W) <0.5	. <	0.1 0.5 0.5	* !	13.0	† !	1.43	عور	7311	 	} }	
1 410-010 @	;		;	س چهند			į.		!		!		4	0		! !	
, ,	;		!		!		; ;		 		; ;				, ,	¦	,
}	!		¦		!		!		; ;		; ;				: :	!	
!	!		!		-+ !		! !		!		!					!	
1	!		!		-+ !		! !		!		!				! !	! !	
!	}		1		ţ		;		1		!				; ;	}	

SO4 result was required 10 x dilution due to high concentration level. All other amons were reported on straight analysis run. All BC requirement were met. The sample was leached (20 gm into 100 ml) into DI type II water prior to analysis.

S - CUBED

Trace Inorganics Report

Client: WHC

Project: 92-231

Sampling Date: 11/02/92

Analyst: EA Review:

Analyte: CRVI

- CUBED	M U I	Client Sample ID	Concentration	MDL
3410-01	S A	B07KP6	; < MDL	0.133
	1 1			
				· · · · · · · · · · · · · · · · · · ·
	1 1		1	
			1	
			 	
	- -			
	1 1 1		i i	
	1 1			
			<u> </u>	
				
	- 			
	1 1 1			

Analysis Date:

11/11/92

UN = Units = (A=mg/kg B=ug/L C=mg/L)

MT = Matrix = (S=Soil W=Water)

Comments: All ac requirement were excellent. was required 1 to 5 dilution prior to analysis due to sample of so gm was backed bix interferences. The

301

MDL

S - CUBED

Trace Inorganics Report

S - CUBED

Client: WHC Project: 92-231 Sampling Date: 11/02/92

Client

MU

Sample No. |T|N| Sample ID

| Concentration

as-N

Analyst: EA Review: WN 11/19 Receipt. Date: 11/05/92

Analyte: NO2/NO3

======================================		wbre Th	as · N	
3410-01	SA BOT		3.34	0.530
			1	
- · · · · · · · · · · · · · · · · · · ·			1	
				
	<u> </u>			
			<u> </u>	
<u>.</u>				
				
				
·			<u> </u>	
·		·		
		-		
				-
	======================================			==========
Preparation		0.100 mg/L 353.3		
Analytical		353.3		
Preparation		11/09/92		
Analysis Da		11/03/32		
HIMI,SIS DA	····	11/11/92		
UN = Units	= (A=mg/kg	B=ug/L C=mg	/L) MT = Matrix =	(S=Soil W=Wate
Comments:	All gc v	quirement	were within the	control limit
The same	de of so	gm was le	were within the ached into 100	mL DI type I
H,0 pri	or to anal	•	-	

Golder Associates Inc.

4104-148th Avenue, NE Redmond, WA 98052 Telephone (206) 883-0777 Fax (206) 882-5498

June 11, 1993

Our ref: 893-1458 WHC/O/378

Westinghouse Hanford Company Hanford Analytical Services Management 345 Hills, MSIN H4-29 Richland, Washington 99352

ATTENTION: Ms. Brianna Colley

RE: NORTH SLOPE ERA DATA VALIDATION, TASK ORDER G-93-58, TRANSMITTAL OF DATA VALIDATION PACKAGES

Dear Ms. Colley:

Enclosed is one analytical data package including associated data validation documentation for a North Slope ERA sample analyzed by the S-Cubed laboratory for volatile, semivolatile, chlorinated pesticide/PCB, chlorinated herbicide and phosphate pesticide organic compounds, metals, anions, and total petroleum hydrocarbons.

The data package included in this shipment is 3410-SCU-080. The validation documentation is located at the front of the data package folder.

Please call if you have any questions.

Sincerely,

GOLDER ASSOCIATES INC.

Kent M. Angelos Project Manager

Donald M. Caldwell Project Director

Enclosures

CC:

Bob Henckel, WHC

JUN 14 1993
VALIDATION DOCUMENTATION:
SOLA

MEMORANDUM

TO: North Slope ERA Project QA Record

June 10, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: Volatile Organic Analysis Data Validation Summary for 3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for volatile organic analysis. The sample was analyzed by the S-Cubed laboratory using EPA method 8140. The sample identification number, collection date, and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1991) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. Goals for precision were met with the exception of the evaluation of matrix spike and matrix spike duplicate samples, which the laboratory did not analyze.

Accuracy. Goals for accuracy were not evaluated because the laboratory did not analyze a matrix spike and matrix spike duplicate. The samples were not qualified based on this anomaly.

Sample Result Verification. All sample results were supported in the raw data with no data correction necessary.

Detection Limits. Detection limit goals were met.

Completeness. The data package was complete for all requested analyses. A total of one (1) sample was validated in this data set with a total of 33 determinations reported. Out of the 33 determinations reported, all determinations were deemed valid which results in a completeness of 100 percent. This completeness percentage meets the work plan objectives of 90%.

MAJOR DEFICIENCIES

The were no major deficiencies identified during validation.

MINOR DEFICIENCIES

Blanks:

Methylene chloride and acetone were detected in the method blank at 3 ug/kg and 5 ug/kg, respectively. Therefore, the associated sample results which are less than five times the respective blank concentration have been qualified as undetected (U).

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF ORGANIC DATA REPORTING QUALIFIERS

- B Indicates the compound was analyzed for and detected in the associated blank. The "B" qualifier for organic data is applied by the laboratory only and is not applied by the data validators.
- U Indicates the compound was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the compound was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the compound was analyzed for and detected; however, due to an identified quality control deficiency the data are unusable.
- NJ Indicates presumptive evidence of a compound at an estimated value.
- N Indicates presumptive evidence of a compound.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

WHC-SD-EN-SPP-002, Rev. 1

DATA QUALIFICATION SUMMARY - FORM B-7

SDG: 34/0	REVIEWER: 0	DATE: 6/4/93	PAGE / OF /
COMMENTS: Val	atiles.	22. W1917 0	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Methylene Chl	ride U	BO7KP6	blank Contam.
Heetone	u	B07KP6	Blank Contain.
	· ·		
<u></u>			

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab	Name:	S-CUBED			Cont:	ract:	-	32359-51	L	· · · · · · · · · · · · · · · · · · ·	_
Lab	Code:	\$3 C	ase	No.:	92-321	SA	S No.:	SI	OG No.:	3410	
Matr	:ix: (s	soil/wate	r)	SOIL		Lab	Sample	ID: 3410	0-01		

Sample wt/vol: 5.00 (g/ml) G Lab File ID: A1110061 Level: (low/med) LOW

Date Received: 11/05/92
%Moisture: not dec. 5.67

GC Column: PACK ID: 2.00 (mm)

Soil Extract Volume: (uL)

Date Received: 11/10/92
Date Analyzed: 11/10/92
Dilution Factor: 1.00
Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) ug/kg

Q

74-87-3	Chloromethane	11	U	
74-83-9	Bromomethane	11	U	
75-01-4	Vinyl Chloride	11	ט	İ
75-00-3	Chloroethane	, 11	บ	يو ا
75-09-2	Methylene Chloride	11-6	J-13-	Ų
67-64-1	Acetone	11 7	3 3	i
75-15-0	Carbon Disulfide	11	U	- 1
75-35-4	1,1-Dichloroethene	11	Ū	- [
75-34-3	1,1-Dichloroethane	11	ט	ļ
540-59-0		11	ט	- 1
67-66-3	Chloroform	11	ับ	
107-06-2	1,2-Dichloroethane	11	U	Į
78-93-3		11	U	
71-55-6	1,1,1-Trichloroethane	11	ט	- 1
56-23-5	Carbon Tetrachloride	11	U	1
75-27-4		11	ט	
78-87-5		11	<u>ש</u>	- 1
	cis-1,3-Dichloropropene	11	U	
79-01-6	Trichloroethene	11	U	1
124-48-1		11	U	
79-00-5	1,1,2-Trichloroethane	11	U	į
71-43-2	Benzene	11	U	- 1
10061-02-6		11	ŭ	- 1
75-25-2	Bromoform	11	ט	1
108-10-1	4-Methyl-2-pentanone	11	U	
591-78-6	2-Hexanone	11	U	.
127-18-4	Tetrachloroethene	11	ָט	
79-34-5	1,1,2,2-Tetrachloroethane	11	U	
108-88-3	Toluene	11	U	-
108-90-7	Chlorobenzene	11	ש	- 1
100-41-4	Ethyl Benzene	11	ש	Į
100-42-5		11	ט	
1330-20 - 7	Xylene (total)	11	U	- 1

Environmental Protection Agency. CLP Somple Management Office. P. O. Sex 818. Alexandre, Virginia 22313 703/567-2460

Sample Number BC J. K.P.C.

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/locolg/kg
1.	NO TIC'S FOUND	VOA		
2				
3. ————				
				<u> </u>
7.				
*				
9. ————				
10				
1				
13				
14.				
16				
17				
18				
19				
20				
21				
23				
24				
25				
,				
27				
29				
30				

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

VOLATILE ORGANIC DATA VALIDATION CHECKLIST - FORM A-1

LABORATORY: S-Cubed C. SAMPLES/MATRIX: God BOTKPL	ase: '92-321_	SDG:	34/0	S
SAMPLES/MATRIX: God BOTKPL				
SAMPLES/MATRIX: God BOTKPL				
·				
	····			
1. DATA PACKAGE COMPLETENESS				
Review the data package for completeness and check of	off the items below. If	any data	a review	7
elements are missing contact the laboratory for submitted				
Data Package Item	Present?:	Yes	No	N/A
Case Narrative		<u> </u>		
Data Summary				
Chain-of-Custody `		~		
QC Summary		,		
Surrogate report		1	-,-	
MS/MSD report		/-		
Blank summary report				
GC/MS tuning report		7		
Internal standard summary report				—
Sample Data		1		
Sample reports			—	
TIC reports for each sample RIC reports for all samples		~		_
Raw and corrected spectra for all detected rest	ulta.	-v-		

Raw and corrected library search data for all reported TIC

Raw and corrected spectra for all detected results in blanks Raw and corrected library search data for all reported TIC

Quantitation and calculation data for all TIC

RIC and quantitation reports for initial calibration

RIC and quantitation reports for cont. calibrations

Initial calibration report

Blank analysis reports TIC reports for all blanks

Continuing calibration reports

Internal standard summary report

Tuning report, spectra and mass lists

RIC and quantitation reports for blanks

Standards Data

Raw OC Data

Data Package Item	Present?:	Yes	No	N/A
Quantitation and calculation data for all TIC MS/MSD report forms RIC and quantitation reports for MS/MSD			V	
Additional Data Moisture/% solids data sheets Reduction formulae Instrument time logs Chemist notebook pages Sample preparation sheets			1777	
2. HOLDING TIMES				
Complete the holding time summary form listing all sample	es and dates of co	llection	and ana	lysis.
Were all samples analyzed within holding time?		Yes	No	N/A
ACTION: If any holding times were exceeded, but not by associated samples as estimated (J for detects or UJ for no (R) and qualify all associated detects as estimated (J).				
3. INSTRUMENT CALIBRATION, TUNING AND PER	RFORMANCE CI	HECKS		
3.1 GC/MS TUNING AND PERFORMANCE CHECKS	,			
Is a bromofluorobenzene tune report present for each appli	icable 12-h period	r Ye	No	N/A
Do all tunes on all instruments meet the tuning criteria?		Ø	No	N/A
Do all tunes on all instruments meet the expanded criteria?	?	Yes	No	N/A
Has the laboratory made any calculation or transciption er	rors?	Yes	No	N/A
Have the proper significant figures been reported?		Yes	No	N/A
ACTION: If the mass calibration is out of specification b associated data as estimated (J for detects or UJ for nonde qualify all associated data as unusable (R).				
3.2 INITIAL CALIBRATION				
Is an initial calibration report provided for all instruments?		Ye	No	N/A
Are all RSD values ≤30% (2/88 SOW)?		Yes	No	N/A
Are all RRF values >0.05 (2/88 SOW)?		Yes	No	MIA

Are all applicable RSD values ≤20.5% (3/90 SOW)?

Are all applicable RSD values ≤40% (3/90 SOW)?

Are all applicable RRF values within SOW limits (3/90 SOW)?

Are all erratic performance compound RRF values ≥0.01 (3/90 SOW)?

Yes No N/A

No N/A

ACTION: With the exception of compounds that exhibit erratic performance and making allowances for up to two TCL compounds, if any RRF value is out of specification qualify all detected results for the particular compound as estimated (J) and all nondetects as unusable (R). Making allowances for up to two TCL compounds, if any RSD value is out of specification qualify all associated data as estimated (J for detects or UJ for nondetects).

3.3. CONTINUING CALIBRATION

Is a continuing calibration report present for all 12-h periods in which associated samples were analyzed?	Yes	No	
Are all RRF values ≥0.05 (2/88 SOW)?	Yes	No	N/A
Are all %D values ≤25% (2/88 or 3/90 SOW)?	Yes	No	N/A
Are all %D values ≤40% (3/90 SOW)?	Yes	No	MA
Are all RRF values within SOW limits (3/90 SOW)?	(Fig.)	No	N/A
Are all erratic performance compound RRF values ≥0.01 (3/90 SOW)?	(Ves	No	N/A

ACTION: With the exception of compounds that exhibit erratic performance and making allowances for up to two TCL compounds, if any RRF value is out of specification qualify all associated detected results as estimated and all nondetects as unusable (R). Making allowances for up to two TCL compounds, if any %D is out of specification, qualify all associated results as estimated (J for detects or UJ for nondetects).

4. BLANKS

4.1 LABORATORY BLANKS

Has the laboratory conducted a method blank analysis per matrix for every 12-h period in which samples were analyzed?

Yes No N/A

Are TCL compounds present in the laboratory blanks?

Yes) No N/A

ACTION: Qualify all sample results ≤ 10 time the highest blank concentration for the common laboratory contaminants, as nondetects (U) or at the SQL if the result is \leq CRQL. Qualify all remaining sample results ≤ 5 times the blank concentration in similar fashion.

4.2. FIELD BLANKS

Are TCL compounds present in the field blanks?

Yes No

ACTION: Qualify all detected sample results <5 times the amount in any valid field blank as nondetects (U) and note the field blank results in the validation narrative.

5. ACCURACY

5.1 SURROGATE/SYSTEM MONITORING COMPOUND RECOVERY

Are any surrogate recoveries out of specification?

Are any surrogate recoveries < 10%?

Yes No N/A

Are any method blank surrogate recoveries out of specification?

Yes No N/A

ACTION: Qualify all associated sample results as estimated (J for detects or UJ for nondetects) for surrogates out of specification but > 10%. Qualify all associated positive sample results as estimated (J) and all nondetect results as unusable (R) for all surrogates below 10%. If method blank surrogates are out of specification and the associated sample surrogates are acceptable no qualification is necessary, however, the laboratory should be contacted for an explanation.

5.2 MATRIX SPIKE RECOVERY

Has an MS/MSD analysis been conducted per matrix in the sample group?

Are MS/MSD recoveries within specification?

Yes No N/A

Yes No N/A

Yes No N/A

ACTION: If an MS/MSD analysis has not been conducted contact the laboratory for an explanation. Review the MS/MSD recoveries in conjunction with other QC data such as surrogate recoveries and note the results in the validation narrative. If MS/MSD recoveries are out of specification and sample concentration is > 5 times the spike concentration, no qualification is required, otherwise qualify results as follows: Qualify positive results for the specific class of compound (aromatics and non-aromatics) as estimated (J) in all samples if associated surrogates are also out of specification. The qualification shall only be done on samples of similar matrix as the MS/MSD samples. If it is determined from the review that only the spiked samples are affected by low recoveries, qualify only the results for the spiked sample as described above. If it is determined from the review that out of specification MS/MSD recoveries are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

5.3 PERFORMANCE AUDIT SAMPLES

Are the performance audit sample results within the acceptance limits?

Yes No

ACTION: Note the results of the performance audit sample in the validation narrative.

6. PRECISION

6.1 MATRIX SPIKE/MATRIX SPIKE DUPLICATES

Are RPD values within specification?

Yes No

Are there any calculation errors?

Yes 1

ACTION: Review the MS/MSD results in conjunction with other QC data such as field duplicates and note the results in the validation narrative. If MS/MSD RPDs are out of specification and sample results are >5xCRQL qualify positive results for the specific class of compound (aromatics and non-aromatics) as estimated (J). If it is determined from the review that out of specification MS/MSD results are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

6.2 FIELD DUPLICATE SAMPLES

Are field duplicate RPD values acceptable?

Yes No

ACTION: Note the results of the field duplicate samples in the validation narrative.

6.3 FIELD SPLIT SAMPLES

Are field split RPD values acceptable?

Yes No

ACTION: Note the results of the field split samples in the validation narrative.

7. SYSTEM PERFORMANCE

7.1 INTERNAL STANDARDS PERFORMANCE

Are any internal standard area counts outside the acceptance limits?

Vec

N/A

Are retention times for any internal standard outside the ±30 second windows established by the most recent calibration check?

Vac

N

N/A

ACTION: If the area counts are outside the acceptance limits qualify all associated results as estimated (J for detects or UJ for nondetects). If it is determined from the review that out of specification area counts and relative retention times are indicative of systematic problems within the laboratory the reviewer may consider rejection of all affected sample data (R).

8. COMPOUND IDENTIFICATION AND QUANTITATION

see comment Z 8.1 COMPOUND IDENTIFICATION Are detected compounds within ± 0.06 relative retention time units of the associated calibration standard? Yes Are all ions at a relative intensity of ≥10% in the standard spectra present in the sample spectra? Do the relative intensities between the standard and sample spectra agree within 20%? Yes No Have all ions > 10% in the sample spectra that are not present in the standard spectra been reviewed for possible background contamination? Yes No Are molecular ions present in the reference specrum present in the sample spectrum? Yes ACTION: If compound identification is in error and retention time and mass spectral criteria are exceeded qualify all affected positive results as unusable (R). If cross-contamination between analyses is suspected, qualify affected data as unusable (R). Note the results in the validation narrative. 8.2 REPORTED RESULTS AND QUANTITATION LIMITS Has the laboratory used the correct RRF values and internal

ACTION: If the results and quantitation limits are in error contact the laboratory for clarification and note in the validation narrative.

N/A

N/A

N/A

No

No

No

8.3 TENTATIVELY IDENTIFIED COMPOUNDS (TIC)

Are results and quantitation limits calculated properly?

Has the laboratory reported the sample quantitation limits

standard(s) for quantitation?

within 5xCROL values?

Has the laboratory conducted a spectral library search on all candidate TIC peaks in accordance with the analytical SOW?

Wes No N/A

Has the laboratory properly identified and coded all TIC?

Yes No N/A

ACTION: If the laboratory has failed to search the minimum number of TIC peaks in the chromatogram contact the laboratory for submittal of the required data. Qualify as nondetects (U) all TIC compounds present in samples and blanks using the review criteria specified in the validation requirements. If TIC identification is in error sample results should be qualified as nondetects (U) or unusable (R). If TIC identifications are judged valid, qualify the results as presumptive and estimated (JN).

9. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?

Yes

No N/A

Were project specific data quality objectives met for this analysis?

Yes

No N/A

ACTION: Summarize all the data qualifications recommended in the foregoing sections, and complete the data validation narrative according to the requirements of Section 10.0 of the data validation requirements.

COMMENTS	(attach a	dditional s	heets as	necessary):				
le A rue	trix	snih	1/n	ratrix	snik	e dupl	inst	14/02 11/0
le A rus perfor the	ned	for 7	Elis	SDG	· no	Walit	Cotin	m. D
the or	lata	will	be	mend	e li	ecau 10	17	the is
						Jo warae	0	was.
2. The	24	1.000	- 4	joine	1000	ue eie	ar qu	alifreel
		reed	use	of 1	earn	Conta	wine	tou.
								
								
							-	
								
	-				·			
<u> </u>				·····				
						·		
								
	··- · · · · · · · · · · · · · · · · · ·							
						·		
					-	<u>:</u>		
								
······································				· · · · · · · · · · · · · · · · · · ·				<u> </u>
				:		·		
	·							
 			··					
				·			· · · · · · · · · · · · · · · · · · ·	
						 		
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
						······································		
			-				· · · · · · · · · · · · · · · · · · ·	
	·							
		·			·			
						···		
						<u> </u>		· · · · · · · · · · · · · · · · · · ·
			-			<u></u> .		
		············						
					····		···	

HOLDING TIME SUMMARY - FORM B-1

SDG: 34/0	REVIEWER: Clauser S: Valvailes			DATE: 6/4	1193	PAGE <u>/</u> OF <u>∫</u>			
COMMENTS:	Voluti.	les							
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER		
BOFKFLO	UOA	11/2/92		10/10/92		8	pone		
					<u> </u>				
						, , , , , , , , , , , , , , , , , , , ,			
		·							
									
	-	:							

BLANK AND SAMPLE DATA SUMMARY - FORM B-3

SDG: 3410 REVIEWER: C.MUGM					DATE: 64193			PAGEOF		
comments: Volables							•			
SAMPLE ID	COMPOUND	RESULT	a	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER	
UBSHIDA		3	1		uglkg		30	B07KP6	U	
	Acetone	5	2	ł	10/1/1/1		50	B07K96	U	
	Aceforl Z-Bufanone	2	J		vyllig		20	pone	pone	
	,				3.0					
·										
		_								
·						_				
							•			
									-	

MEMORANDUM

TO: North Slope ERA Project QA Record

June 10, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: Total Recoverable Petroleum Hydrocarbon Analysis Data Validation Summary for

3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for total recoverable petroleum hydrocarbon (TRPH) analysis. The sample was analyzed by the S-Cubed laboratory using EPA method 418.1. The sample identification number, collection date, and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1991) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. Goals for precision were met.

Accuracy. Goals for accuracy were met.

Sample Result Verification. All sample results were supported in the raw data with no data correction necessary.

Detection Limits. Detection limit goals were met.

Completeness. The data package was complete for all requested analyses. A total of one sample was validated in this data set with a total of one determination reported. Out of the one determination reported, it was deemed valid which results in a completeness of 100 percent. This completeness percentage meets the work plan objectives of 90%.

MAJOR DEFICIENCIES

There were no major deficiencies identified requiring rejection of the data.

Data Package: 3410-SCU-070 Analysis: TRPH

MINOR DEFICIENCIES

There were no minor deficiencies identified requiring rejection of the data.

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF ORGANIC DATA REPORTING QUALIFIERS

- B Indicates the compound was analyzed for and detected in the associated blank. The "B" qualifier for organic data is applied by the laboratory only and is not applied by the data validators.
- U Indicates the compound was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the compound was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the compound was analyzed for and detected; however, due to an identified quality control deficiency the data are unusable.
- NJ Indicates presumptive evidence of a compound at an estimated value.
- N Indicates presumptive evidence of a compound.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

DATA QUALIFICATION SUMMARY - FORM B-7

SDG: 3410	REVIEWER: 47	DATE: 10/9/93	PAGE OF /
COMMENTS: TRP	4		
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
			i
		No state of the st	
			
	107		
	1/X	ļ	
	N		<u> </u>
	XV		
	ν.΄		
		1	
	 		
			-
/			

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

					7	$\overline{}$			
Analyte:	TRPH			Smpl Aliquot:	0.020 (K	(g)or L			
Method:	418.1			Final Volume:	0.1		5		
Technique:	IR Spec.								
DATE:	11/10/92			Concs:	p.p.m.				
Analyst:	CF			Reagent #1	20				
Instr:	P&E IR Spec.			#2	40				
Case:	-			#3	80				
Lot(s):	3392,97,99,3409			#4	160				
				#5	300				
Standards				#6					
Source:	S-CUBED/EL42	:40							
Corr. Coef.	0.99990								
				Detection Limit	20mg/kg				
Std.	Abs	Conc							
Blank	0	0			-				
#1	0.03	20							
#2	0.062	40							
#3	0.126	80							
#4	0.245	160							
#5	0.46	300							
#6									
									_
								(mg/kg)	(1
S-Cubed	Clienz	Abs.	Conc.	Dil.	SAMPLE	Detection	%	Final	
Sample ID	Sample ID		(ug/ml)	Factor	Conc.	Limit	Mois.	CONC.	
EBS1109A		0	0.0000	1	0.0000	20		0	
LCSS1109A		0.205	133.2923	1	666. 4616	20		666	
EBS1106B		0	0.0000	1	0.0000	20		0	
LCSS1106B		0.203	131.9919	1	659.9596	20		660	
3397-04RX	S1454070	0	0.0000	1	0.0000	20	5.9	0	
3399-04RX	22A 10-4	0	0.0000	1	0.0000	20	15.1	0	
3392-01RX	S1459180	0.154	100.1318	1	500.6590	20	17.29	605	
3392-01REPR	S1459180REP	0.169	109.8849	1	549.4245	20	17.29	664	
3409-01	S1454260	0.081	52.6667	1	263.3336	20	14.5	308	
3409-02	S14545 7 8	0.109	70.8725	1	354.3625	20	14.9	416	
3409-03	S1454261	0	0.0000	1	0.0000	20	8.33	0	
3409-04	S1454264	0	0.0000	1	0.0000	20	10.04	0	
3409-05	S1454257	0.231	150.1977	5	3754.9424	100	10.3	4186	
3409-06	S1454258	0	0.0000	1	0.0000	20	6.94	0	
3409-07	S1454449	0.101	65.6709	1	328.3543	20	9.87	364	
3409-08	S1454255	0	0.0000	1	0.0000	20	9.7	0	
3409-09	S1454076	0	0.0000	1	0.0000	20	13.31	0	
3409-10	S1454068	0	0.0000	1	0.0000	20	6.41	0	
3410-01	B07KP6	0	0.0000	1	0.0000	20	5.67	0	

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

TRPH

VOLATILE ORGANIC DATA VALIDATION CHECKLIST - FORM A-1

PROJECT: JIMIN SLOPE ERA	REVIEWER: 💪	DATE: 0/9/93
LABORATORY: 5- Cubed	CASE: 92 321	SDG: 34/0
SAMPLES/MATRIX: JULY BUT LOV	j?	

1. DATA PACKAGE COMPLETENESS

Review the data package for completeness and check off the items below. If any data review elements are missing contact the laboratory for submittal.

Data Package Item	Present?:	Yes	No	N/A
Case Narrative Data Summary Chain-of-Custody			<u></u>	
QC Summary Surrogate report MS/MSD report Blank summary report GC/MS tuning report Internal standard summary report	cy69/43	<u></u> 		
Sample Data Sample reports TIC reports for each sample RIC reports for all samples Raw and corrected spectra for all detected results Raw and corrected library search data for all reported Quantitation and calculation data for all TIC Standards Data	TIC			
Initial calibration report RIC and quantitation reports for initial calibration Continuing calibration reports RIC and quantitation reports for cont. calibrations Internal standard summary report Raw QC Data				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Tuning report, spectra and mass lists Blank analysis reports TIC reports for all blanks RIC and quantitation reports for blanks Raw and corrected spectra for all detected results in the Raw and corrected library search data for all reported		<u> </u>		

Data Package Item	Present?:	Yes	No	N/A
Quantitation and calculation data for all TIC MS/MSD report forms RIC and quantitation reports for MS/MSD	5 28 (न	mar	ut]	
Additional Data Moisture/% solids data sheets Reduction formulae Instrument time logs Chemist notebook pages Sample preparation sheets		7	\frac{7}{2}	
2. HOLDING TIMES		.,2		
Complete the holding time summary form listing all samples	and dates of coll	lection a	nd ana	lysis.
Were all samples analyzed within holding time?		Yes	No	N/A
ACTION: If any holding times were exceeded, but not by grassociated samples as estimated (J for detects or UJ for nonder (R) and qualify all associated detects as estimated (J).				
3. INSTRUMENT CALIBRATION, TUNING AND PERFO	ORMANCE CH	ECKS		·
3.1 GC/MS TUNING AND PERFORMANCE CHECKS				
Is a bromofluorobenzene tune report present for each applical	ble 12-h period?	Yes	No	(N/A
Do all tunes on all instruments meet the tuning criteria?		Yes	No	N/A
Do all tunes on all instruments meet the expanded criteria?		Yes	No	N/A)
Has the laboratory made any calculation or transciption error	s?	Yes (No	N/A)
Have the proper significant figures been reported?		Yes	No	NTA
ACTION: If the mass calibration is out of specification but associated data as estimated (J for detects or UJ for nondetect qualify all associated data as unusable (R).				
3.2 INITIAL CALIBRATION				
Is an initial calibration report provided for all instruments?		Yes	No	N/A
Are all RSD values ≤30% (2/88 SOW)?		Yes	No	NIA
Are all PDE values >0.05 (2/88 5030)2		V.	Nia	(NUA)

Are all applicable RSD values ≤20.5% (3/90 SOW)?	Yes	No	N/A
Are all applicable RSD values ≤40% (3/90 SOW)?	Yes	No	N7A
Are all applicable RRF values within SOW limits (3/90 SOW)?			N/A
Are all erratic performance compound RRF values ≥0.01 (3/90 SOW)?	Yes	No	(N/A)

ACTION: With the exception of compounds that exhibit erratic performance and making allowances for up to two TCL compounds, if any RRF value is out of specification qualify all detected results for the particular compound as estimated (J) and all nondetects as unusable (R). Making allowances for up to two TCL compounds, if any RSD value is out of specification qualify all associated data as estimated (J for detects or UJ for nondetects).

3.3. CONTINUING CALIBRATION

Is a continuing calibration report present for all 12-h periods in which associated samples were analyzed?	Yes	No	N/A
Are all RRF values ≥0.05 (2/88 SOW)?	Yes	No	N/A
Are all %D values ≤25% (2/88 or 3/90 SOW)?	Yes	No	N/A
Are all %D values ≤40% (3/90 SOW)?	Yes	No	N/A
Are all RRF values within SOW limits (3/90 SOW)?	Yes	No	N/A
Are all erratic performance compound RRF values ≥0.01 (3/90 SOW)?	Yes	No	N7A

ACTION: With the exception of compounds that exhibit erratic performance and making allowances for up to two TCL compounds, if any RRF value is out of specification qualify all associated detected results as estimated and all nondetects as unusable (R). Making allowances for up to two TCL compounds, if any %D is out of specification, qualify all associated results as estimated (J for detects or UJ for nondetects).

4. BLANKS

4.1 LABORATORY BLANKS

Has the laboratory conducted a method blank analysis per matrix for every 12-h period in which samples were analyzed?	Yes	No	N/A
Are TCL compounds present in the laboratory blanks?	Yes	No	N/A

ACTION: Qualify all sample results ≤ 10 time the highest blank concentration for the common laboratory contaminants, as nondetects (U) or at the SQL if the result is \leq CRQL. Qualify all remaining sample results ≤ 5 times the blank concentration in similar fashion.

4.2. FIELD BLANKS

Are TCL compounds present in the field blanks?

Yes No

ACTION: Qualify all detected sample results ≤ 5 times the amount in any valid field blank as nondetects (U) and note the field blank results in the validation narrative.

5. ACCURACY

5.1 SURROGATE/SYSTEM MONITORING COMPOUND RECOVERY

Are any surrogate recoveries out of specification?

Are any surrogate recoveries < 10%?

Are any method blank surrogate recoveries out of specification?

Yes No N/A

Yes No N/A

ACTION: Qualify all associated sample results as estimated (J for detects or UJ for nondetects) for surrogates out of specification but > 10%. Qualify all associated positive sample results as estimated (J) and all nondetect results as unusable (R) for all surrogates below 10%. If method blank surrogates are out of specification and the associated sample surrogates are acceptable no qualification is necessary, however, the laboratory should be contacted for an explanation.

5.2 MATRIX SPIKE RECOVERY

Has an MS/MSD analysis been conducted per matrix in the sample group?

Are MS/MSD recoveries within specification?

Yes No N/A

Are there any calculation errors?

Yes No N/A

ACTION: If an MS/MSD analysis has not been conducted contact the laboratory for an explanation. Review the MS/MSD recoveries in conjunction with other QC data such as surrogate recoveries and note the results in the validation narrative. If MS/MSD recoveries are out of specification and sample concentration is > 5 times the spike concentration, no qualification is required, otherwise qualify results as follows: Qualify positive results for the specific class of compound (aromatics and non-aromatics) as estimated (J) in all samples if associated surrogates are also out of specification. The qualification shall only be done on samples of similar matrix as the MS/MSD samples. If it is determined from the review that only the spiked samples are affected by low recoveries, qualify only the results for the spiked sample as described above. If it is determined from the review that out of specification MS/MSD recoveries are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

5.3 PERFORMANCE AUDIT SAMPLES

Are the performance audit sample results within the acceptance limits?

Yes No

(N/A)

ACTION: Note the results of the performance audit sample in the validation narrative.

6. PRECISION

6.1 MATRIX SPIKE/MATRIX SPIKE DUPLICATES

Are RPD values within specification?

Yes No

N/A

Are there any calculation errors?

Yes No

N/A

ACTION: Review the MS/MSD results in conjunction with other QC data such as field duplicates and note the results in the validation narrative. If MS/MSD RPDs are out of specification and sample results are >5xCRQL qualify positive results for the specific class of compound (aromatics and non-aromatics) as estimated (J). If it is determined from the review that out of specification MS/MSD results are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

6.2 FIELD DUPLICATE SAMPLES

Are field duplicate RPD values acceptable?

Yes No

ACTION: Note the results of the field duplicate samples in the validation narrative.

6.3 FIELD SPLIT SAMPLES

Are field split RPD values acceptable?

Yes No

ACTION: Note the results of the field split samples in the validation narrative.

7. SYSTEM PERFORMANCE

7.1 INTERNAL STANDARDS PERFORMANCE

Are any internal standard area counts outside the acceptance limits?

Yes

Are retention times for any internal standard outside the ±30 second windows established by the most recent calibration check?

Yes No

No

ACTION: If the area counts are outside the acceptance limits qualify all associated results as estimated (J for detects or UJ for nondetects). If it is determined from the review that out of specification area counts and relative retention times are indicative of systematic problems within the laboratory the reviewer may consider rejection of all affected sample data (R).

8. COMPOUND IDENTIFICATION AND QUANTITATION

8.1 COMPOUND IDENTIFICATION

Are detected compounds within ± 0.06 relative retention time units of the associated calibration standard?	Yes	No	N/A
Are all ions at a relative intensity of ≥10% in the standard spectra present in sample spectra?	the Yes	No	N/A
Do the relative intensities between the standard and sample spectra agree within 20%?	Yes	No	N/A
Have all ions > 10% in the sample spectra that are not present in the standard spectra been reviewed for possible background contamination?	Yes	No	N/A
Are molecular ions present in the reference specrum present in the sample spectrum?	Yes	No	N/A

ACTION: If compound identification is in error and retention time and mass spectral criteria are exceeded qualify all affected positive results as unusable (R). If cross-contamination between analyses is suspected, qualify affected data as unusable (R). Note the results in the validation narrative.

8.2 REPORTED RESULTS AND QUANTITATION LIMITS

Has the laboratory used the correct RRF values and internal standard(s) for quantitation?	Yes	No	N/A
Are results and quantitation limits calculated properly?	Yes	No	N/A
Has the laboratory reported the sample quantitation limits within 5xCRQL values?	Yes	No	N/A

ACTION: If the results and quantitation limits are in error contact the laboratory for clarification and note in the validation narrative.

8.3 TENTATIVELY IDENTIFIED COMPOUNDS (TIC)

Has the laboratory conducted a spectral library search on all candidate TIC peaks in accordance with the analytical SOW?	Yes	No	N/A)
Has the laboratory properly identified and coded all TIC?	Yes	No	N/A)

ACTION: If the laboratory has failed to search the minimum number of TIC peaks in the chromatogram contact the laboratory for submittal of the required data. Qualify as nondetects (U) all TIC compounds present in samples and blanks using the review criteria specified in the validation requirements. If TIC identification is in error sample results should be qualified as nondetects (U) or unusable (R). If TIC identifications are judged valid, qualify the results as presumptive and estimated (JN).

9. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?

Yes

No N/A

Were project specific data quality objectives met for this analysis?

Yes

No N/A

ACTION: Summarize all the data qualifications recommended in the foregoing sections, and complete the data validation narrative according to the requirements of Section 10.0 of the data validation requirements.

OMM	ŒŅTS	(attach additional	l sheets as nece	assary):			
/.	Mu	latorato 1115/11182), recoveri	My mould	iszid a	u 665	i cilitad	07
•	Rul	1415/11/82),	"whin!	/ will	ar 1	er surid	Lev
	27	recoveri	1_1_				<i>,</i>
		1					
		·					
							
		······································					
***					· · · · · · · · · · · · · · · · · · ·		
							
							
					<u> </u>		<u> </u>
							
					···		
						<u> </u>	
							•
							· · · · · · · · · · · · · · · · · · ·
					····		
							,
				 _	· · · · · · · · · · · · · · · · · · ·		
	· · ·						
							
			······································				
		- 					

HOLDING TIME SUMMARY - FORM B-1

SDG: 3410	REVIEWER:	() Luxi	,V	DATE: زي/	143		PAGE/_OF_/
COMMENTS:	TRPH	1					
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
GOTKPG	TRPA	11/2/92	49/92	11/10/92	7	1	lone
				,			
					 		
	-						

MEMORANDUM

TO: North Slope ERA Project QA Record

June 10, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: Semivolatile Organics Analysis Data Validation Summary for 3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for semivolatile organics analysis. The sample was analyzed by the S-Cubed laboratory using CLP protocols. The sample identification, collection date, and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1991) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. Goals for precision were met with the exception of the evaluation of matrix spike (MS) and matrix spike duplicate (MSD) samples, which were not analyzed by the laboratory.

Accuracy. Goals for accuracy were met with the exception of the evaluation of MS and MSD samples, which were not analyzed by the laboratory.

Sample Result Verification. All sample results were supported in the raw data with no data correction necessary. The laboratory performed an unknown search and identified DDT in sample B07KP4 at a concentration of 310 ug/kg and confirmed this in the pesticides/PCB analysis at a concentration of 341 ug/kg.

Detection Limits. Detection limit goals were met.

Completeness. The data package was complete for all requested analyses. A total of one (1) sample was validated in this data set with a total of 64 determinations reported. Out of the 64 determinations reported, all determinations were deemed valid which results in a completeness of 100 percent. This completeness percentage meets the work plan objectives of 90%.

MAJOR DEFICIENCIES

A tentatively identified compound (TIC), an aldol condensation product, 4-hydroxy-4-methyl-2-pentanone was detected in sample B07KP6 at a concentration of 3200 ug/kg and was qualified as unusable (R).

MINOR DEFICIENCIES

The laboratory indicated in the case narrative that a matrix spike (MS) and matrix spike duplicate (MSD) were analyzed for this sample set, however, the data and forms were not submitted with the data package. Therefore, the data was not evaluated based on precision and accuracy using the MS/MSD results.

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF ORGANIC DATA REPORTING QUALIFIERS

- B Indicates the compound was analyzed for and detected in the associated blank. The "B" qualifier for organic data is applied by the laboratory only and is not applied by the data validators.
- U Indicates the compound was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the compound was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the compound was analyzed for and detected; however, due to an identified quality control deficiency the data are unusable.
- NJ Indicates presumptive evidence of a compound at an estimated value.
- N Indicates presumptive evidence of a compound.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

DATA QUALIFICATION SUMMARY - FORM B-7

	7	· · · · · · · · · · · · · · · · · · ·	, ,	
SDG: 3410	REVIEWER: Cy	DATE: 6/8/93	PAGE / OF /	
COMMENTS: Sevi	involatiles.			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON	
4-hydroxy-4-met	seel R	BOTKPLe	Tic is an	
4-hydroxy-4-met			The is an aldol condensa product	tion
			product.	
			/	
				!
	 		<u> </u>	
				:
	<u> </u>		ļ	
				
<u></u>			<u> </u>	
				

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

B07KP6

Dilution Factor: 1.00

Lab Name: S-CUBED Contract: 32359-51

Matrix: (soil/water) SOIL Lab Sample ID: 3410-01
Sample wt/vol: 30 (g/ml) G Lab File ID: DN12061
Level: (low/med) LOW Date Received: 11/05/92
%Moisture: 5.67 decanted: (Y/N) N Date Extracted: 11/09/92
Concentrated Extract Volume: 2000.00 (uL) Date Analyzed: 11/12/92

Injection Volume: 1.00 (u/L)
GPC Cleanup: (Y/N) Y pH: 8.95

CONCENTRATION UNITS:

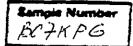
CAS NO. COMPOUND (ug/L or ug/Kg) ug/kg Q

Phenol	700	υ
bis(2-Chloroethyl)ether	700	U
2-Chlorophenol	700	ט
1,3-Dichlorobenzene	700	U
1,4-Dichlorobenzene	700	ט
	700	U
2-Methylphenol	700	ד
	700	ប
	700	ប
	700	ט
Hexachloroethane	700	U
Nitrobenzene	700	U
Isophorone	700	σ
	700	U
	700	U
bis (2-Chloroethoxy) methane	700	υ
2,4-Dichlorophenol		υ
1,2,4-Trichlorobenzene		ΰ
Naphthalene	700	υ·
4-Chloroaniline	700	U
Hexachlorobutadiene	700	U
4-Chloro-3-methylphenol	700	ប
2-Methylnaphthalene	700	ប
Hexachlorocyclopentadiene		ΰ
2,4,6-Trichlorophenol	7 00	ប
2,4,5-Trichlorophenol	1700	U
2-Chloronaphthalene	700	U
2-Nitroaniline	1700	U
Dimethylphthalate	700	U
Acenaphthylene		U
2,6-Dinitrotoluene		U
3-Nitroaniline		ប
Acenaphthene	700	ט
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline	2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2-Nitronaphthalene 2-Nitronaphthalene 2-Nitronaphthalene 3-Nitroaniline 3-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

B07KP6

32359-51 Lab Name: S-CUBED Contract:


Lab Sample ID: 3410-01 Matrix: (soil/water) SOIL Sample wt/vol: 30 (g/ml) G Lab File ID: DN12061 Date Received: 11/05/92 Level: (low/med) LOW %Moisture: 5.67 decanted: (Y/N) N Date Extracted: 11/09/92

Concentrated Extract Volume:2000.00 (uL)Date Analyzed: 11/12/92 Injection Volume: 1.00 (u/L) GPC Cleanup: (Y/N) Y pH: 8.95 Dilution Factor: 1.00

CONCENTRATION UNITS: CAS NO. COMPOUND

(ug/L or ug/Kg) ug/kg Q

51-28-5	2,4-Dinitrophenol	1700	U
100-02-7	4-Nitrophenol	1700	ע
132-64-9	Dibenzofuran	700	[U]
121-14-2	2,4-Dinitrotoluene	700	U
84-66-2	Diethylphthalate	700	ן ט
7005-72-3	4-Chlorophenyl-phenyl ether	700	ן ט
86-73-7	Fluorene	700	U
100-01-6	4-Nitroaniline	1700	ט
534-52-1	4,6-Dinitro-2-methylphenol	1700	ן ט
86-30-6	N-Nitrosodiphenylamine (1)	700	ן ט
101-55-3	4-Bromophenyl-phenylether	700	ן ט
118-74-1	Hexachlorobenzene	700	ן ט
87-86-5	Pentachlorophenol	1700	ן ט
85-01-8	Phenanthrene	700	U
120-12-7	Anthracene	700	Ū
86-74-8	Carbazole	700	ט
84-74-2	Di-n-butylphthalate	260	JJ
206-44-0	Fluoranthene	700	ן ט
129-00-0	Pyrene	700	ן ד
85-68-7	Butylbenzylphthalate	700	U
91-94-1	3,3'-Dichlorobenzidine	700	lΰ
56-55-3	Benzo (a) anthracene	700	Ü
218-01-9	Chrysene	700	lυ
117-81-7	Bis(2-Ethylhexyl)phthalate	700	ا ت
117-81-7	Di-n-octylphthalate	700	Ü
	Benzo(b) fluoranthene	700	ا
205-99-2		700	ا تا
207-08-9	Benzo(k) fluoranthene	700	ا تا
50-32-8	Benzo(a) pyrene	700	Ü
193-39-5	Indeno(1,2,3-cd)pyrene	700	Ü
53-70-3	Dibenz(a, h) anthracene	700	
191-24-2	Benzo(g,h,i)perylene	/00	١
İ		1	1
		1	

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT of Scan Number	Estimated Concentration (ug/1 or ug/kg
100/23-42-2	2-PENTANONE 4-KYDROXY-4-METH	BNA	49	320 F110
2 50-29-3	DDT	₩	1293	310 IN
3				
4				
5				
6				
7				
8				
3				
10				
11				
12				
13				
14.				
5				
7				
8				
3				
o				
1	·			
2				
3				
4				
5				
7				

oj welgy : 010

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

SEMI-VOLATILE ORGANIC DATA VALIDATION CHECKLIST - FORM A-2

PROJECT: North Slove ERA	REVIEWER: Of	DATE: 4/7/93
LABORATORY: S- Cubed	CASE: 92-321	SDG: 34/0
SAMPLES/MATRIX: Soil BOJKPU	0	

1. DATA PACKAGE COMPLETENESS

Review the data package for completeness and check off the items below. If any data review elements are missing contact the laboratory for submittal.

Data Package Item	Present?:	Yes	No	N/A
Case Narrative		/		
Data Summary			To is	11498
Chain-of-Custody				
QC Summary				 -
Surrogate report				
MS/MSD report		· .	▽ \$	ecomment:
Blank summary report		\overline{V}		
GC/MS tuning report				
Internal standard summary report		$\overline{\mathcal{J}}$		
Sample Data				
Sample reports		1461444		
TIC reports for each sample		V.		
RIC reports for all samples		7		
Raw and corrected spectra for all detected results		7		
Raw and corrected library search data for all reported	TIC	V		
Quantitation and calculation data for all TIC		7		
Standards Data				
Initial calibration report				
RIC and quantitation reports for initial calibration				
Continuing calibration reports		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
RIC and quantitation reports for cont. calibrations		7		
Internal standard summary report		7		
Raw QC Data				
Tuning report, spectra and mass lists		✓.		
Blank analysis reports		7)		
TIC reports for all blanks		7		
RIC and quantitation reports for blanks		-		
Raw and corrected spectra for all detected results in b	Janke	<u> </u>		
Raw and corrected library search data for all reported		-1/- /		
Quantitation and calculation data for all TIC	110	NA NA		-
MS/MSD report forms		-		
MOUNTOD TEHOLI TOTHE			<u>-Ľ</u>	

Data Package Item	Present?:	Yes	No	N/A
RIC and quantitation reports for MS/MSD Additional Data Moisture/% solids data sheets Reduction formulae Instrument time logs Chemist notebook pages Sample preparation sheets				
2. HOLDING TIMES				
Were all samples extracted within holding time?		Yes	No	N/A
Were all samples analyzed within holding time?	•	Yes	No	N/A
ACTION: If any holding times were exceeded, but not by grassociated samples as estimated (J for detects or UJ for nonde (R) and qualify all associated detects as estimated (J).				
3. INSTRUMENT CALIBRATION, TUNING AND PERFO	RMANCE CH	ECKS		
3.1 GC/MS TUNING AND PERFORMANCE CHECKS				
Is a DFTPP tune report present for each applicable 12h period	1?	Yes	No	N/A
Do all tunes on all instruments meet the tuning criteria?		Yes	No	N/A
Do all tunes on all instruments meet the expanded criteria?		Yes	No	. (VA)
Has the laboratory made any calculation or transciption errors	?	Yes	No	N/A
Have the proper significant figures been reported?		Yes	No	N/A
ACTION: If the mass calibration is out of specification but wassociated data as estimated (J for detects and UJ for nondetect qualify all associated data as unusable (R).				
3.2 INITIAL CALIBRATION				
Is an initial calibration report provided for all instruments?		Yes	No	N/A
Are all RSD values ≤30% (2/88 SOW)?		Yes	No	N/Ā
Are all RRF values ≥0.05 (2/88 SOW)?		Yes	No	NA
Are all applicable RSD values ≤20.5% (3/90 SOW)?		(Yes)	No	N/A
Are all applicable RSD values ≤40% (3/90 SOW)?		Yes	No	(N/A)

Are all applicable RRF values within SOW limits (3/90 SOW)?

(Yes)

No N/A

Are all erratic performance compound RRF values ≥0.01 (3/90 SOW)?

Yes

No N/A

ACTION: With the exception of compounds that exhibit erratic performance and making allowances for up to four TCL compounds or surrogates, if any RRF value is out of specification qualify all detected results for the particular compound as estimated (J) and all nondetects as unusable (R). Making allowances for up to four TCL compounds or surrogates, if any RSD value is out of specification qualify all associated data as estimated (J for detects or UJ for nondetects).

3.3. CONTINUING CALIBRATION

Is a continuing calibration report present for all 12-h periods in which associated samples were analyzed?	Yes	No	N/A
Are all RRF values ≥0.05 (2/88 SOW)?	Yes	No	NA
Are all %D values ≤25% (2/88 or 3/90 SOW)?	Yes	No	N/A
Are all %D values ≤40% (3/90 SOW)?	Yes	No	N/A
Are all RRF values within SOW limits (3/90 SOW)?	Yes	No	N/A
Are all erratic performance compound RRF values ≥0.01 (3/90 SOW)?	Yes	No	N/A

ACTION: With the exception of compounds that exhibit erratic performance and making allowances for up to four TCL compounds or surrogates, if any RRF value is out of specification qualify all associated detected results as estimated and all nondetects as unusable (R). Making allowances for up to four TCL compounds or surrogates, if any %D is out of specification, qualify all associated results as estimated (J for detects or UJ for nondetects).

BLANKS

4.1 LABORATORY BLANKS

Has the laboratory conducted a method blank analysis per matrix for every extraction batch?

o N/A

N/A

Are compounds reported in the laboratory blanks?

Yes

√o)

ACTION: Qualify all sample results < 10 times the highest blank concentration for the common laboratory contaminants, as nondetects (U) or at the SQL if the result is < CRQL. Qualify all remaining sample results < 5 times the blank concentration in similar fashion.

4.2. FIELD BLANKS

Are compounds reported in the field blanks?

Yes No

ACTION: Qualify all detected sample results ≤ 5 times the amount in any valid field blank as nondetects (U) and note the results of the field blanks in the validation narrative.

5. ACCURACY

5.1 SURROGATE RECOVERY/SYSTEM MONITORING COMPOUND RECOVERY

Are any surrogate recoveries out of specification?

Yes No N/A

Are any surrogate recoveries < 10%?

Yes No N/A

Are any method blank surrogate recoveries out of specification?

Yes No N/A

ACTION: Qualify all associated data as estimated (J for detects and UJ for nondetects) if at least two semivolatile surrogates are out of specification. If any surrogate is below 10% recovery qualify associated detected results as estimated (J) and associated nondetect results as unusable (R). If method blank surrogates are out of specification and associated sample surrogates are acceptable no qualification is required, however, the laboratory should be contacted for an explanation.

5.2 MATRIX SPIKE RECOVERY

Has an MS/MSD analysis been conducted per matrix in the sample group?

Are MS/MSD recoveries within specification?

Are there any calculation errors?

Yes No N/A

Yes No N/A

ACTION: If an MS/MSD analysis has not been conducted contact the laboratory for an explanation. Review the MS/MSD recoveries in conjunction with other QC data such as surrogate recoveries and note the results in the validation narrative. If MS/MSD recoveries are out of specification and sample concentration is >5 times the spike concentration, no qualification is required, otherwise qualify results as follows: Qualify positive results for the specific class of compound (aromatics and non-aromatics) as estimated (J) in all samples if associated surrogates are also out of specification. The qualification shall only be done on samples of similar matrix as the MS/MSD samples. If it is determined from the review that only the spiked samples are affected by low recoveries, qualify only the results for the spiked sample as described above. If it is determined from the review that out of specification MS/MSD recoveries are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

5.3 PERFORMANCE AUDIT SAMPLES

Are the results for the performance audit samples within the acceptance limits?

Yes No

ACTION: Note the results of the performance audit samples in the validation narrative.

6. PRECISION

6.1 MATRIX SPIKE/MATRIX SPIKE DUPLICATES

Sel Comment 1

Are all RPD values within specification?

Yes No

N/A

Are there any calculation errors?

Yes No

N/A)

ACTION: Review the MS/MSD results in conjunction with other QC data such as field duplicates and note the results in the validation narrative. If MS/MSD RPDs are out of specification and sample results are >5xCRQL qualify positive results for the specific class of compound (aromatics and non-aromatics) as estimated (I). If it is determined from the review that out of specification MS/MSD results are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

6.2 FIELD DUPLICATE SAMPLES

Are field duplicate RPD values acceptable?

Yes No

ACTION: Note the results of the field duplicate samples in the validation narrative.

6.3 FIELD SPLIT SAMPLES

Are field split RPD values acceptable?

Yes No

ACTION: Note the results of the field split samples in the validation narrative.

7. SYSTEM PERFORMANCE

7.1 INTERNAL STANDARDS PERFORMANCE

Are any internal standard area counts outside the acceptance limits?

Yes

N/A

Are retention times for any internal standard outside the ±30 second windows established by the most recent calibration check?

Yec

No

N/A

ACTION: If the area counts are outside the acceptance limits qualify all associated results as estimated (J for detects and UJ for nondetects. If it is determined from the review that out of specification area counts and relative retention times are indicative of systematic problems within the laboratory the reviewer may consider rejection of all affected sample data (R).

8. COMPOUND IDENTIFICATION AND QUANTITATION

8.1 COMPOUND IDENTIFICATION

See comment 2 Are detected compounds within ± 0.06 relative retention time units of the associated calibration standard? Yes Are all ions at a relative intensity of ≥10% in the standard spectra present in the sample spectra? No N/A Do the relative intensities between the standard and sample spectra agree within 20%? No N/A Have all ions > 10% in the sample spectra that are not present in the standard spectra been reviewed for possible background contamination? No N/A Are molecular ions in the reference spectrum present in the sample spectrum? No N/A

ACTION: If compound identification is in error and retention time and mass spectral criteria are exceeded qualify all affected positive results as unusable (R). If cross-contamination between analyses is suspected, qualify affected data as unusable (R).

8.2 REPORTED RESULTS AND QUANTITATION LIMITS

Has the laboratory used the correct RRF values and internal standards for quantitation?

Are results and quantitation limits calculated properly?

Has the laboratory reported the sample quantitation limits within 5xCRQL values?

No N/A

ACTION: If the quantitation limits are in error contact the laboratory for clarification and note in the validation narrative.

8.3 TENTATIVELY IDENTIFIED COMPOUNDS

Has the laboratory conducted a spectral library search on all candidate TIC peaks in accordance with the analytical SOW?

(Yes) No N/A

Has the laboratory properly identified and coded all TIC?

(Yes) No N/A Sea Comment 3.

ACTION: If the laboratory has failed to search the minimum number of TIC peaks in the chromatogram contact the laboratory for submittal of the required data. Qualify as nondetects (U) all TIC compounds present in samples and blanks using the review criteria specified in the validation requirements. If TIC identification is in error sample results should be qualified as nondetects (U) or unusable (R). If TIC identifications are judged valid, qualify the results as presumptive and estimated (JN).

9. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?

(Yes)

No N/A

Were project specific data quality objectives met for this analysis?

Yes

No

N/A

ACTION: Summarize all the data qualifications and complete the data validation narrative as specified in Section 10.0 of the data validation requirements.

COMMENTS (attach additional sheets as necessary):	
1. The case manative soup that a matrix spilling	
Solution problem is mesent, fromewer the	
Solution problem is present, fromewar the laboratory did not submit MS/MSD results	
of or storm with thee data nachage. No	
data qualification will be done as a result of the missing MS/MSD data.	
result of the missing MS/MSD data.	
2. Di-n- butul sulvalate was delected in the	
Musule Rotatile left the refer to a striver upone	
not listed out. The spectra was reviewed.	
and identification of the convound is correct:	
3. DOT was identified in the TIC search. The	
Commound was also detected in the	
Prot/PCB analyses. TIC concentration = 310 ug/kg Pest/PCB concentration = 3	
TIC Concentration = 310 us/Kb Dest/POB Concentration = 3	41 ug1
4-highery-4-methyl-2-pentamone was detected in the sample at 3200 ingles while is an aldol condless atten product. The result is qualified as unusable (R)	
in the sample at 3200 realky which is an	
aldol condless atten product. The result is	
avalities as unverable (R)	
•	

HOLDING TIME SUMMARY - FORM B-I

SDG: 3410	REVIEWER:	C Jeusen		DATE: 6/9	8/928		PAGE <u>/</u> OF <u>/</u>
COMMENTS:	Sauriva	latiles					
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
BUZKPLO	SVOA	11/2/92	1119192	11/12/92	7	3	hone
							<u> </u>
				•			
		!					
	•						
			·				

MEMORANDUM

TO: North Slope ERA Project QA Record

June 11, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: Organochlorine Pesticide/PCB Data Validation Summary for 3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for organochlorine pesticide/PCB analysis. The sample was analyzed by the S-Cubed laboratory using CLP protocols. The sample identification number, collection date, and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1991) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. Goals for precision could not be evaluated because a matrix spike (MS) and matrix spike duplicate (MSD) were not analyzed.

Accuracy. A MS and MSD were not analyzed for this sample delivery group (SDG). A laboratory control sample was analyzed and reviewed for percent recovery with all results acceptable.

The surrogate percent recoveries were outside control limits as noted in "Minor Deficiencies".

Sample Result Verification. The retention time for DDD shifted during sample analysis, therefore the laboratory did not report the result. The DDD was confirmed by GCMS and was corrected on the result form for sample B07KP6 and is designated by a "C" qualifier.

The laboratory reported the original concentrations instead of the diluted concentrations for 4,4-DDE and 4,4-DDT which exceeded the calibration range. The results form for sample B07KP6 was corrected to reflect the diluted sample concentrations. The difference between the original and diluted concentrations is small.

Detection Limits. The laboratory performed a cleanup (GPC) on the sample and the reported detection limits did not reflect this. Therefore, the detection limits were multiplied by a factor of two and the result form was corrected.

Completeness. The data package was complete for all requested analyses. A total of one sample was validated in this data set with a total of 28 determinations reported. Out of the 28 determinations reported, all determinations were deemed valid which results in a completeness of 100 percent. This completeness percentage meets the work plan objectives of 90%.

MAJOR DEFICIENCIES

There were no major deficiencies identified requiring rejection of the data.

MINOR DEFICIENCIES

<u>Surrogates</u>

All surrogate recoveries for method blank EBS1109 were slightly low (51 to 58%). Since the recoveries for sample B07KP6 were acceptable, no qualification or results was made.

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF ORGANIC DATA REPORTING QUALIFIERS

- B Indicates the compound was analyzed for and detected in the associated blank. The "B" qualifier for organic data is applied by the laboratory only and is not applied by the data validators.
- U Indicates the compound was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the compound was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the compound was analyzed for and detected; however, due to an identified quality control deficiency the data are unusable.
- NJ Indicates presumptive evidence of a compound at an estimated value.
- N Indicates presumptive evidence of a compound.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

DATA QUALIFICATION SUMMARY - FORM B-7

SDG: 34/6 REVIEWER: 43 DATE: 6/9/43 PAGE_OF_ COMMENTS: 2, 9 morphism, in Pist / DCBS COMPOUND QUALIFIER SAMPLES REASON AFFECTED REASON AFFECT	,			والمستقدية المستوان المستوان المستوان	
COMPOUND QUALIFIER SAMPLES REASON 44'DDD 127 C BOTKPG laboratory and not reported action washing x 2 BOTKPG GPC done, for - Versuito X 2 44 DDE 272 BOTKPG Whited Amily 44 DDT 342 BOTKPG Wales Week	SDG: 34/6	REVIEWER: 5	DATE: 6/9/93	PAGE / OF /	
COMPOUND QUALIFIER SAMPLES REASON 44'DDD 127 C BOTKPG laboratory and not reported action washing x 2 BOTKPG GPC done, for - Versuito X 2 44 DDE 272 BOTKPG Whited Amily 44 DDT 342 BOTKPG Wales Week	COMMENTS: 9,0	Marodolovine	Pist / PCBS		
All Miraluss X2 BOTKPG GPC Name, Con- Valuity X2 440DT 342 BOTKPG Walson Week		/ I	SAMPLES	1	
All M. Values x 2 BO7KP6 GPC done, con- Valueb x 2 440DE Z72 BO7KP6 delicted samiles 440DT 342 BO7KP6 Wales week	44'000	127 C	BOTKPLO	laboratory did	
440DE 272 BOFKPLO Allerted Samiles 440DT 342 BOFKPLO Wales Washington		1	BOTKPG	GPC done,	M-0
440DT 342 BOTKPle Waleur Week					
440DT 342 BOTKPle Waleur Week	440DE	272	607KP6	delisted same	Ps
	44 ODT	342	BOTKPL		
				<u> </u>	

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

Q

10

PESTICIDE SOIL ORGANICS ANALYSIS DATA SHEET

CAS NO.

Lab Name: S-CUBED Contract: 32359-51
Lab Code: S3 Case No.: 92-321 SAS No.: SDG No.: 3410
Matrix: (soil/water) SOIL Lab Sample ID: 3410-01

Sample wt/vol: 30 (g/ml) G

*Moisture: 5.67 decanted: (Y/N) N

Extraction: (SepF/Cont/Sonc) SONC

Concentrated Extract Volume: 10000 (vil) Page Applicated: 12/01/02

Concentrated Extract Volume: 10000 (uL) Date Analyzed: 12/01/92 Injection Volume: 1.00 (uL) Dilution Factor: 1.00 GPC Cleanup: (Y/N) Y pH: 8.95 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: compound (ug/L or ug/Kg) ug/kg

		·		(4)
76-44-8 Heptach 309-00-2 Aldrin 1024-57-3 Heptach 959-98-8 Endosul 60-57-1 Dieldr: 72-55-9 4,4'-Di 72-20-8 Endrin 33213-65-9 Endosul 72-54-8 4,4'-Di 1031-07-8 Endosul 50-29-3 4,4'-Di 50-29-3 4,4'-Di 50-29-3 Heptach 72-43-5 Methox 53494-70-5 Endrin 7421-36-3 Endrin 5103-71-9 alpha-6	HC (Lindane) HC (Lindane) Hor epoxide fan I In E In In In In In In In In In In In In In	3.40 3.40 3.40 3.50	वववववववववववववक्षववववववववववववववववववववववव	ن

9619/93

3/90

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

PESTICIDE/PCB DATA VALIDATION CHECKLIST - FORM A-3

PROJECT: 7/ 5. the Stone FR. H.	REVIEWER: () Luster	DATE: 4/9/49
LABORATORY: 5- Cubed	CASE: 92-32/	SDG: 3410
SAMPLES/MATRIX: Soci BOTK	.Pla	_
		·
		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
1. DATA PACKAGE COMPLETENESS	•	
Review the data package for completeness and che	ck off the items below. If any d	ata review

Review the data package for completeness and check off the items below. If any data review elements are missing contact the laboratory for resubmittal.

Data Package Item	Present?:	Yes	No	N/A
Case Narrative Data Summary		<u>/</u>	三	
Chain-of-Custody				
QC Summary		/		
Surrogate report				- 1
MS/MSD report			1	maneral 1
Blank summary report		V		<u>-</u> _
Sample Data		1		
Sample reports		<u> </u>	 ,	
Chromatograms				
GC integration reports		<u> </u>		
Worksheets			4	
UV traces from GPC			<u> </u>	
GC/MS confirmation spectra		سكن		
Standards Data				
Pesticides Evaluation Standards Summary				
Pesticides/PCB Standards Summary				
Pesticides/PCB identification		-Lunge		
Pesticides standard chromatograms				
Raw QC Data		_		
Blank analysis report forms and chromatograms				
MS/MSD report forms and chromatograms			<u> </u>	comment 1

•				
Data Package Item	Present?:	Yes	No	N/A
Additional Data Moisture/% solids data sheets Reduction formulae Instrument time logs Chemist notebook pages Sample preparation sheets			V 144	
2. HOLDING TIMES				
Were all samples extracted within holding time?		Yes	No	N/A
Were all samples analyzed within holding time?		(Yes)	No	N/A
ACTION: If any holding times were exceeded, but not by grassociated samples as estimated (J for detects or UJ for nonder) and qualify all associated detects as estimated (J).				
3. INSTRUMENT PERFORMANCE AND CALIBRATION	IS			
3.1 INSTRUMENT PERFORMANCE (2/88 SOW)				
Are DDT retention times greater than 12 minutes?		Yes	No	N/A
ACTION: If DDT retention time is \leq 12 minutes and resolution unusable (R).	tion is <25% qu	ualify as	sociated	data as
Is resolution between DDT peaks acceptable?		Yes	No	(N/A)
ACTION: If resolution between DDT peaks is unacceptable	qualify associate	d data a	s unusa	ble (R).
Do all pesticide standards elute within the established retention time windows?		Yes	No	(N/A)
ACTION: If the standards do not meet the retention time criwithin the retention time windows no sample qualification is the retention time windows and the standards and matrix spik retention time windows calculated according to the validation sample results from the last in-control point as unusable (R).	necessary. If pe	aks are thin the	near or expand	within led
Are DDT breakdowns ≤20%?		Yes	No	(N/A)
ACTION: If the DDT percent breakdown exceeds 20%, quaestimated (J) and all nondetects as unusable (R) if DDD and all results for DDD or DDE as presumptive and estimated (N	DDE are detecte			
Are endrin breakdowns <20%?		Yes	No	(N/A)

ACTION: If the endrin breakdown exceeds 20%, qualify all detected results for endrin as estimated (I) and all nondetects as unusable (R) if endrin aldehyde or endrin ketone are detected. In addition, qualify all results for endrin ketone as presumptive and estimated (NI).

Are DBC retention time differences within specification?

Yes No

N/A

ACTION: If DBC %D values are outside the limits and the shift is occurring repeatedly in samples and standards, qualify affected sample results as unusable (R).

3.2 CALIBRATIONS (2/88 SOW)

Are RSD values for aldrin, endrin, DDT and DBC ≤10%?	Yes	No	N/A
Have all standards been analyzed within 72 h of any sample?	Yes	No	N/A
Has a 3-point calibration been conducted for DDT or toxaphene?	Yes	No	N/A)
Have all standards been analyzed at the start of each 72-h sequence?	Yes	No	N/A)
Have evaluation standards A, B, and C been analyzed within 72 h of any sample?	Yes	No	N/A
Has the confirmation standard mix been analyzed after every five samples?	Yes	No	N/A
Has evaluation standard B analyzed every 10 samples?	Yes	No	NA
Are %D values for initial and subsequent standards ≤15% for quantitation standards and ≤20% for confirmation standards?	Yes	No	· N/A

ACTION: If the RSD criteria were exceeded or three point calibrations not conducted qualify associated detects as estimated (J). If all standards were not analyzed at the beginning of each 72-h sequence qualify associated data as unusable (R). If the confirmation standards were not analyzed properly qualify associated detects as estimated (J). If the continuing calibration criteria were not met qualify associated quantitation data as estimated (J).

3.3 INSTRUMENT PERFORMANCE AND INITIAL CALIBRATION (3/90 SOW)

Is peak resolution acceptable?	Yes	No	N/A
ACTION: If the resolution criteria are not met, reject positive sample resulcalibration (R).	ts genera	ted afte	r initial
Are DDT and endrin breakdowns ≤20.0%	Yes	No	N/A
ACTION: If the breakdown criteria are not met qualify sample results as do of the validation requirements.	escribed i	in Sectio	on 5.3.1
Are single component target compounds in the PEMs, INDA, INDB and the calibration standards within the retention time windows?	Yes	No	N/A
ACTION: If the retention time criteria are not met and no peaks are present two times the retention time windows (± 0.04 , ± 0.05 for methoxychlor), no necessary. If peaks are present in samples within the retention time window raw data to determine expanded retention time windows (see Section 5.3.1 or requirements). If all standards and matrix spikes fall within the expanded windows then all affected sample results are qualified as unusable	o qualification of the value of	ation is v is mad idation hen no	le of the
Are the RPDs acceptable for the PEMs?	Yes	No	N/A
ACTION: If the RPD criteria are not met qualify associated positive sample 20% of will as Are the RSDs for the calibration factors < 10.0% (< 15.0% for the BHC series, DDT, endrin, and methoxychlor)?	e results	as estin	nated (J).
ACTION: If the RSD criteria are not met qualify associated positive sample	e results	as estin	iated (J).
3.4 CALIBRATION VERIFICATION (3/90 SOW)			
Have the analytical sequence requirements been met for the analysis of instrument blanks, PEMs, INDA and INDB mixes?	Yes	No	N/A
ACTION: If the analytical sequence requirements are not followed and any retention time criteria listed below are exceeded, reject associated positive re-			n or
Is peak resolution acceptable for PEMs, INDA and INDB mixes?	Yes	No	N/A
ACTION: If the resolution criteria are not met reject positive sample result noncompliant standard analysis (R).	s generat	ed after	a
Are single component target compounds in the PEMs, INDA and INDB mixes within the retention time windows?	<i>Y</i> ès	No	N/A

N/A

No

ACTION: If the retention time criteria are not met and no peaks are present in the samples analyzed after the noncompliant standard within two times the retention time windows (± 0.04 , ± 0.05 for methoxychlor), no qualification is necessary. If peaks are present in samples within the expanded windows rejected associated positive and nondetect results (R).

Are RPDs between the calculated and true amounts in the PEMs, INDA and INDB mixes ≤25.0%?

Yes)

No N/A

ACTION: If the RPD criteria are not met qualify associated positive sample results as estimated (J).

Are DDT and endrin breakdowns in the PEMs ≤20.0% (≤30.0% total combined)?

Yes

No N/A

ACTION: If the breakdown criteria are not met qualify associated positive sample results in accordance with the criteria specified in Section 5.3.1.

4. BLANKS

4.1 LABORATORY BLANKS

Has the laboratory analyzed the method blanks at the required frequency?

Yes

No N/A

Has the laboratory analyzed a sulfur clean-up blank if required?

Yes

No (N/

Has the laboratory analyzed instrument blanks at the required frequency?

Yes

Are target compounds present in the blanks?

Yes

N/A

ACTION: Qualify all associated positive results as nondetects (U) that are <5 times the highest concentration in any acceptable blank.

4.2 FIELD BLANKS

Are target compounds present in the field blanks?

Yes

ACTION: If target compounds are present in the field blanks qualify all positive sample results <5 times the highest valid field blank concentrations as nondetects (U) and note the results in the validation narrative.

5. ACCURACY

5.1 SURROGATE RECOVERY

Are any surrogate recoveries out of specification?

Yes

No N/A

Do any samples show nondetects for surrogates?

Yes No

N/A

Are any method blank surrogates out of specification?

Yes No N/A

ACTION: Qualify all associated sample results as estimated (J for detects and UJ for nondetects) for surrogates out of specification. If the surrogate was not detected (0% recovery) in the sample qualify associated nondetects as unusable (R). If method blank surrogates are out of specification and sample surrogates are acceptable, no qualification is required however, the laboratory should be contacted for an explanation.

5.2 MATRIX SPIKE RECOVERY

Has the laboratory analyzed a MS/MSD per matrix for the the sample group?

s No

N/A

してら Are MS/MSD recoveries within specification?

Yes No

o N/A

Are there any calculation or transcription errors?

Yes

N/A

ACTION: If MS/MSD analyses have not been conducted contact the laboratory for clarification. Review the MS/MSD recoveries in conjunction with other QC data such as surrogate recoveries and note the results in the validation narrative. If MS/MSD recoveries are out of specification and sample concentration is >5 times the spike concentration, no qualification is required, otherwise qualify results as follows: Qualify positive results as estimated (J) in all samples if associated surrogates are also out of specification. The qualification shall only be done on samples of similar matrix as the MS/MSD samples. If it is determined from the review that only the spiked samples are affected by the low recoveries, qualify only the results for the spiked sample as described above. If it is determined from the review that out of specification MS/MSD recoveries are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

5.3 PERFORMANCE AUDIT SAMPLES

Are performance audit sample results within the acceptance limits?

Yes No

N/A)

ACTION: Note the results of the performance audit samples in the validation narrative.

6. PRECISION

6.1 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLES

Are the RPD values within specification?

Yes No (N

ACTION: Review the MS/MSD results in conjunction with other QC data such as field duplicates and note the results in the validation narrative. If MS/MSD RPD values are out of specification and sample results are >5xCRQL qualify positive results as estimated (J). If it is determined from the review that out of specification MS/MSD results are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

6.2 FIELD DUPLICATE SAMPLES

Are field duplicate RPD values acceptable?

Yes No

N/A

ACTION: Note the results of the field duplicate samples in the validation narrative.

6.3 FIELD SPLIT SAMPLES

Are field split RPD values acceptable?

Yes No

ACTION: Note the results of the field split samples in the validation narrative.

7. COMPOUND IDENTIFICATION AND QUANTITATION

7.1 COMPOUND IDENTIFICATION	SCR	cou	unent 3
Do positive results meet the retention time window criteria?	Yes	No	N/A
Were positive results analyzed on disimilar columns?	Yes	No	N/A
If dieldrin and DDE were reported was a 3% OV-1 column used for confirmation (2/88 SOW data only)?	Yes	No	(N/A)
Do retention times and relative peak height ratios match the expected patterns for multipeak compounds (PCB, toxaphene or chlordane)?	Yes	No	N/A
Has GC/MS confirmation been conducted on sample extract concentrations > 10 ppm?	(Yes)	No	N/A

ACTION: If positive results do not meet the retention time criteria qualify all detected results as nondetects as follows: If the misidentified peak is outside the retention time windows and no interferences are noted report the CRQL and if the misidentified peak interferes with a target peak then the report value is qualified as estimated and nondetected (UJ). If positive results were not confirmed on disimilar columns, reject affected results (R). If a 3% OV-1 was used to confirm dieldrin and DDE, reject the affected data (R). If PCB, chlordane or toxaphene identification is questionable qualify the results as presumptive and estimated (NJ). If GC/MS confirmation was not conducted contact the laboratory for explanation and note in the validation narrative.

7.2 REPORTED RESULTS AND QUANTITATION LIMITS

Are results and quantitation limits calculated properly?

Has the laboratory reported the sample quantitation limits within 5xCRQL values?

Le comment 4,5

ACTION: If results and quantitation limits are in error contact the laboratory for clarification and note in the validation narrative.

8. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?

Yes No N/A

Were project specific data quality objectives met for this analysis?

Yes No N/A

ACTION: Summarize all the data qualifications and complete the data validation narrative as specified in Section 10.0 of the data validation requirements.

MIS (MS) Was and submitted rounces an LCS was analyzed with the sawyile Tosten and will be revened for The sunogate recoveries for the blank EBS 1109) are all out lent not extremly ion - the limits are 60-15 and the recoveries are 51 to 58%. 710 sawyile
an LCS was analyzed with the sawylle Total and will be reviewed for The sunogate recoveries for the blank EBS1109) are all out lent not extremly ion - the limits are 60-15 and the
The sunogate recordies for the black (EB\$1109) are all out lent not extremly ion - the limits are 60-15 and the
2. The surrogade recoveries for the blank (EBS1109) are all out lent not extremly ion - the limits are 60-15 and the
2. The surrogate recoveries for the blank (EB\$1109) are all out lent not extremly ion - the limits are 60-15 and the
ion - the limits are 60-15 and the
ion - the limits are 60-15 and the
low - the limits are 60-15 and the
revoluies are 51 to 58%. 710 sawrele
walification will be made because i)
this.
The retention time for DDD stripel friences
A wind dedocted bookly low the GC used
continued les GC118. It was not reported
The referent times of DDD is outside the
the reference times of DDD is outside the
Window S
The laboratory dell a GPC lout did not
reflect this in the detection livings
reported on the results form. The under
values will be multiplied by 2
The loboratory reported the results that
had not bean delited. The form has been
the difference between these two values is small.
the difference between these two values is great.
· ·

HOLDING TIME SUMMARY - FORM B-I

Drawo	7		DATE: 6/9	1177		PAGE_/_OF_/_
	SDG: 3410 REVIEWER: C Justin DATE: 6/9/93 PAGE 10F1 COMMENTS: Vyanochlorine Pest /PCBs					
ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
Perller	11/2/92	1119192	12/1/92	7	20	nori
		·				
	·					
			-	· · · · · · · · · · · · · · · · · · ·		
				····		
	TYPE	TYPE SAMPLED	TYPE SAMPLED PREPARED PONTRY 11/2/92 11/9/92		ANALYSIS DATE SAMPLED PREPARED DATE ANALYZED TIME, DAYS Peril Wh 11/2/92 1/19/92 7	ANALYSIS DATE SAMPLED PREPARED ANALYZED TIME, DAYS TIME, DAYS PORTING 11/2/92 11/9/92 7 20

MEMORANDUM

TO: North Slope ERA Project QA Record

June 11, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: Organochlorine Herbicide Analysis Data Validation Summary for 3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for organochlorine herbicide analysis. The sample was analyzed by the S-Cubed laboratory using EPA method 8150. The sample identification number, collection date, and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1991) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. The laboratory did not analyze a matrix spike and matrix spike duplicate sample. Therefore, the relative percent differences could not be evaluated.

Accuracy. The laboratory did not analyze a matrix spike and matrix spike duplicate sample, therefore, percent recoveries (% R) could not be evaluated. The laboratory did analyze a laboratory control sample (LCS) in which the recoveries were evaluated and were acceptable.

The surrogate recovery was exceeded as noted in "Minor Deficiencies".

Sample Result Verification. All sample results were supported in the raw data with no data correction necessary.

Detection Limits. Detection limit goals were met.

Completeness. The data package was complete for all requested analyses. A total of one sample was validated in this data set with a total of 10 determinations reported. Out of the 10 determinations reported, all determinations were deemed valid which results in a completeness of 100 percent. This completeness percentage meets the work plan objectives of 90%.

MAJOR DEFICIENCIES

There were no major deficiencies identified requiring rejection of the data.

MINOR DEFICIENCIES

Accuracy

The surrogate recovery exceeded the control limits for the method blank. Since this is a blank, no qualification of the sample data was necessary.

Holding Times

The extraction holding time was exceeded for sample B07KP6. Therefore, the sample results were qualified as estimated (J for detects, UJ for non-detects).

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF ORGANIC DATA REPORTING QUALIFIERS

- B Indicates the compound was analyzed for and detected in the associated blank. The "B" qualifier for organic data is applied by the laboratory only and is not applied by the data validators.
- U Indicates the compound was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the compound was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the compound was analyzed for and detected; however, due to an identified quality control deficiency the data are unusable.
- NJ Indicates presumptive evidence of a compound at an estimated value.
- N Indicates presumptive evidence of a compound.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

DATA QUALIFICATION SUMMARY - FORM B-7

SDG: 34/0	REVIEWER:	DATE: 6/9/93/	PAGE_/OF_/
	zanochtorine	Herticoles	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
all	Joy UJ	BOTKPT	holding true exceed
	<u> </u>	<u> </u>	
			<u> </u>
			1
ļ			
			
			
		· · · · · · · · · · · · · · · · · · ·	
		<u></u>	<u> </u>

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

EPA SAMPLE NO.

HERBICIDE ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab Name: S-CUBED	Contrac	t: 32359-51	
Lab Code: S3 Case	No.: 92-321	SAS No.: SDG	No.: 3410
Matrix: (soil/water)	SOIL	Lab Sample ID:	
Sample wt/vol: 5	(g/ml) G	Lab File ID: H11	20-4DB1701077
- 0.5 # - J - 2 - 2		Maka Magadasada 1	1 /AE /A2

*Moisture: 5.67 decanted: (Y/N) N Date Received: 11/05/92
Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 11/16/92
Concentrated Extract Volume: 5000 (uL) Date Analyzed: 11/22/92
Injection Volume: 1.00 (uL) Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 8.95 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/F	(g) ug/kg	Q	<u> </u>
94-75-7 94-82-6 93-76-5 93-72-1 88-85-7 120-36-5 1918-00-9 75-99-0 93-65-2 94-74-0	2,4-D 2,4-DB 2,4,5-T 2,4,5-TP Dinoseb Dichlorprop Dicamba Dalapon MCPP MCPA		105 52.6 26.3 26.3 105 52.6 26300 26300	中山中中中中中山 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	コココココココココココココココココココココココココココココココココココココココ

5019193

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

Juganochterine HERBICIDE DATA VALIDATION CHECKLIST - FORM A-4

PROJECT: //ort/1 Slove FRH	reviewer: G	DATE: 6/9/93
LABORATORY: 5 - Crebed	CASE: 92-321	SDG: 3410
SAMPLES/MATRIX: Soll BOAKPIO		

1. DATA PACKAGE COMPLETENESS

Review the data package for completeness and check off the items below. If any data review elements are missing contact the laboratory for submittal.

Data Package Item	Present?:	Yes	No	N/A
Case Narrative		<u>/</u>	100	
Data Summary		-7		
Chain of Custody Forms		-V_/		
Sample Analysis Request				
QC Summary		1		
Surrogate Recovery			 _	. — / /
MS/MSD Recovery		/	4	le comment /
Method Blank Summary				·
Sample Data		/		
Sample Results		<u> </u>		
Chromatograms for all samples/extracts		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Quantitation sheets for all samples/extracts		<u>~</u>		 :
Extraction data sheets for all samples/extracts		<u></u>		
Instrument time/run logs for all samples/extra	cts	V		
Standards Data		1		
Initial Calibration standard concentrations		4444		
Initial Calibration summary of RRF/RSD data	1	V		· ·
Chromatograms for all initial cal. standards		<u> </u>		
Quantitation sheets for all initial cal. standard	8	<u> </u>		
Instrument time/run logs for all samples/extra	icts			
Calibration standard traceability data		<u> </u>		وبيششارين
Raw QC Data		·		
Blanks		,4		
Laboratory Blank results		<u>v</u>		
Chromatograms for all laboratory bla	nks	V		
Quantitation reports for all laboratory				
Matrix Spike/Matrix Spike Duplicates				
してら MS/MSD Results		V.		
Chromatograms				
94/9/97 Quantitation reports		V		

Data Package Item	Present?:	Yes	No	N/A
Additional Data Moisture/% Solids data sheets Calculation formulae Instrument Run/Time Logs Chemist notebook pages Sample preparation sheets		<u>/</u>	<u> </u>	
2. HOLDING TIMES				
Were all samples extracted within holding times	?	Yes	No	N/A
Were all samples analyzed within holding times	?	Yes	No	N/A
ACTION: If the extraction or analytical holdin qualify all affected results as estimated (J for denondetects (R) and qualify all detects as estimated	tects and UJ for nondetects).			
3. INSTRUMENT CALIBRATION				
3.1 INITIAL CALIBRATION				
Was an initial calibration conducted prior to sample analysis?		Yes	No	N/A
Are all RSD values <20%?		(Yes	No	N/A
ACTION: If the RSD criteria were not met, quondetects).	ualify all results as estimated	(J for de	etects an	d UJ for
3.2 CONTINUING CALIBRATION				
Have continuing calibrations been conducted at proper frequency? RPDS < 15% 76943 FW D		Ges C	No	N/A
Are the RRFs within ±15% of the initial calibration	ration average RF?	Yes	No	N/A
Are the RT values for the calibration compound retention time windows?	Is within the	Yes	No	N/A
ACTION: If the percent difference criteria or associated data as estimated (J for detects, UJ f		ot met,	qualify a	all
4. BLANKS				
4.1 LABORATORY BLANKS				
Has the laboratory analyzed at least one methor the sample batch?	d blank per matrix in	X es	No	N/A

Are target compounds present in the laboratory blanks?

Yes

No N

N/A

ACTION: Qualify all detected results in the samples that are < 5 times the amount in any laboratory blank as nondetects (U).

4.2 FIELD BLANKS

Are target compounds present in the field blanks?

Yes No

ACTION: Qualify all detected results in the samples that are < 5 times the amount in any valid field blank as nondetects (U).

5. ACCURACY

5.1 SURROGATE RECOVERY

Are any surrogate recoveries out of specification?

3el comment

NO

N/2

Are any surrogates nondetected?

Yes

) N/A

ACTION: Surrogate recoveries out of specification will require qualification of all associated data as estimated (I for detects and UI for nondetects). Surrogate recoveries that are 0% will require qualification of all detects as estimated (I) and the rejection of all nondetects (R).

5.2 MATRIX SPIKE RECOVERY

Has the laboratory conducted a MS/MSD analysis per matrix for the sample group?

Are there calculation or transcription errors?

Are MS recoveries within specification?

es No N/A

Yes (No) N/A

Yes No N/A

ACTION: If MS/MSD analyses have not been conducted contact the laboratory for clarification. Review the MS/MSD recoveries in conjunction with other QC data such as surrogate recoveries and note the results in the validation narrative. If MS/MSD recoveries are out of specification and sample concentration is >5 times the spike concentration, no qualification is required, otherwise qualify positive results as estimated (J) in all samples if associated surrogates are also out of specification. The qualification shall only be done on samples of similar matrix as the MS/MSD samples. If it is determined from the review that only the spiked samples are affected by the low recoveries, qualify only the results for the spiked sample as described above. If it is determined from the review that out of specification MS/MSD recoveries are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

5.3 PERFORMANCE AUDIT SAMPLES

Are performance audit sample results within the acceptance limits?

Yes No

ACTION: Note the results of the performance audit samples in the validation narrative.

6. PRECISION

6.1 MATRIX SPIKE/MATRIX SPIKE DUPLICATES

Are there any calculation or transcription errors?

Yes No

NA

Are the RPD values within specification?

Yes N

N/A

ACTION: Review the MS/MSD results in conjunction with other QC data such as field duplicates and not the results in the validation narrative. If MS/MSD RPD values are out of specification and sample results are > 5xCRQL qualify positive results as estimated (I). If it is determined from the review that out of specification MS/MSD results are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

6.2 FIELD DUPLICATES

Are the field duplicate RPDs acceptable?

Yes

N/A

ACTION: Note the results of the field duplicate samples in the validation narrative.

6.3 FIELD SPLIT SAMPLES

Are the field split RPDs acceptable?

Yes

No

NILLY

ACTION: Note the results of the field split samples in the validation narrative.

7. COMPOUND IDENTIFICATION AND QUANTITATION

7.1 COMPOUND IDENTIFICATION

Are positive results within the retention time windows?

Yes No

No

el commu

Are positive results unaffected by interfering peaks?

Yes

እ፣/ ለ

ACTION: If positive results are not within the retention time windows qualify all detected results as nondetects as follows: If the misidentified peak is outside the retention time windows and no potential interferences are present, report the CRQL and if the misidentified peak interferes with the potential detection of a target peak then the reported value is the quantitation limit and the result is qualified as estimated (UJ).

1.2 REPORTED RESULTS AND QUANTITATION LIMITS

Has the laboratory reported sample quantitation limits within 5xCRQL levels?

Yes

No

N/A

Are there any calculation or transcription errors?

es (î

N/A

ACTION: If the results and quantitation limits are in error contact the laboratory for clarification and discuss in the validation narrative.

8. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?

Yes

N/A

Were project specific data quality objectives met for this analysis?

Ŷes

No

N/A

ACTION: Summarize all the data qualifications and complete the data validation narrative as specified in Section 10.0 of the data validation requirements.

COMMENTS (attach additional sheets as necessary):
1. " I let outing and we are an instaise out
jud do an LCS first will it wated
for i'v recovery.
2 Same and all all and a subject to the first
2 moragan successing was above free courter situation
15-150 (1810) and 1906) or the search and
_ LCS.5 "HAA" "WILL NOS NO QUALIFIED VECAUSE
2 Smogate recovery was above the control limit 8775-150 (181% and 190%) for the Blank and LCS. South Frank will not be qualified because of this.
3. (CS concentrations reported as slightly deficient than N-Calculated values from the grantitation report which may be due to vourding. It Values are acceptable.
deficient than N-Calculated values
from the grantitation report which man
be due to vouding. Hel values are
accipitable.
If Muse were in a residue identide afterna
4 there were no positive identifications.

HOLDING TIME SUMMARY - FORM B-1

SDG: 174/0	REVIEWER:	G:		DATE: 10/0	1193		PAGE <u>/</u> OF <u>/</u>
COMMENTS:	Ovejam	ochlovin	e Herbie	cides			
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
BOTKPT	·Herts.	11/2/92	11/6/92	11/21/92	14	5	Jorles
				-			
				-			

	·						

MEMORANDUM

TO: North Slope ERA Project QA Record

June 11, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: Organophosphorus Pesticide Analysis Data Validation Summary for 3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for organophosphorus pesticide analysis. The sample was analyzed by the S-Cubed laboratory using EPA method 8140. The sample identification number, collection date, and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1991) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. Goals for precision were met with the exception of the compounds in the individual mix A with the exception of sulprophos as noted in "Minor Deficiencies".

Accuracy. The laboratory analyzed a laboratory control sample (LCS) instead of a matrix spike (MS) and matrix spike duplicate (MSD) with results summmarized in "Major Deficiencies".

Surrogate recoveries were also outside control limits as noted in "Minor Deficiencies".

Sample Result Verification. All sample results were supported in the raw data with no data correction necessary.

Detection Limits. Detection limit goals were met.

Completeness. The data package was complete for all requested analyses. A total of one sample was validated in this data set with a total of 21 determinations reported. Out of the 21 determinations reported, a total of 19 determinations were deemed valid which results in a completeness of 90 percent. This completeness percentage meets the work plan objectives of 90%.

Data Package: 3410-SCU-080

MAJOR DEFICIENCIES

The LCS recoveries were low for merphos (6.2%) and high for bolstar (2192%) and coumaphos (318%). Therefore, sample results were qualified as unusable (R for detects, UR for non-detects).

MINOR DEFICIENCIES

Calibrations

The initial calibration relative percent differences (%RPD) of 25% was exceeded for all compounds in the individual mix A with the exception of sulprophos. Therefore, the results for sample B07KP6 were qualified as estimated (J for detects, UJ for non-detects).

Surrogates

The surrogate control limit of 40 - 140% was exceeded for sample B07KP6 (157%). Therefore, the results have been qualified as estimated (J for detects, UJ for non-detects).

Matrix Spike/Matrix Spike Duplicates

An MS and MSD were not analyzed for this sample delivery group and therefore were not evaluated.

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF ORGANIC DATA REPORTING QUALIFIERS

- B Indicates the compound was analyzed for and detected in the associated blank. The "B" qualifier for organic data is applied by the laboratory only and is not applied by the data validators.
- U Indicates the compound was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the compound was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the compound was analyzed for and detected; however, due to an identified quality control deficiency the data are unusable.
- NJ Indicates presumptive evidence of a compound at an estimated value.
- N Indicates presumptive evidence of a compound.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

DATA QUALIFICATION SUMMARY - FORM B-7

SDG: 3410	REVIEWER: (2)	DATE: 6/9/93	PAGE/OF/
COMMENTS: DV	muin his out in	vs Pesticides	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
all	Jorys	BOTKPLO	Surveyale BR Mig
Mesquos	R		Surgale BRAING
Mesquos Balstar Carmaphis	R		1 21929
Counter	R	y	¥ 318,2
		<u> </u>	
	<u> </u>		
	<u> </u>		
	<u> </u>		
	 		
	 		<u> </u>
	<u> </u>		
	<u> </u>	1	
	 		
	 		<u> </u>
		 	
<u> </u>			
	<u> </u>		
	<u> </u>	<u> </u>	
	<u> </u>	<u> </u>	

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

EPA SAMPLE NO.

PESTICIDE SOIL ORGANICS ANALYSIS DATA SHEET

B07KP6

Lab Name: S-CUBED Contract: 32359-51 SDG No.: 3410 Lab Code: S3 Case No.: 92-321 SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: 3410-01 (g/ml) G Lab File ID: A1124-6DB1A021 Sample wt/vol: 30 *Moisture: 5.67 decanted: (Y/N) N Date Received: 11/05/92 Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 11/09/92 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 11/25/92 Injection Volume: 1.00 (uL) Dilution Factor: 1.00 GPC Cleanup: (Y/N) N pH: 8.95 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/kg	Q

CAS NO.	COWLOOND (AG)T	or ug/kg) ug/kg	Q	Q_{\perp}
115-90-2 13194-48-4 150-50-5 2921-88-2 298-00-0 298-02-2 298-04-4 299-84-3 300-76-5 327-98-0 333-41-5 34843-46-4 35400-43-2 55-38-9 56-72-4 62-73-7 7786-34-7 8065-48-3 8065-48-3 86-50-0 961-11-5	Fensulfothion Ethoprop Merphos Chlorpyrifos Parathion-methyl Phorate Disulfoton Ronnel Naled Trichloronate Diazinon Tokuthion(Prothiofos) Bolstar(Sulprophos) Fenthion Coumaphos Dichlorvos Mevinphos Dematon-O Dematon-P Azinphos methyl Stirophos(Tetrachlorvi	53.0 21.2 21.2 10.6 10.6 10.6 21.2 21.2 21.2 21.2 10.6 10.6 10.6 42.4 42.4 42.4 53.0 53.0	प्षेष्ष्प्ष्पिष्ष्प प्रविद्या ।	नियम्पर्याचित्रविविव्यविव्यविव्यविव्यविव्यविक्रिया

004

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

OVOJAMOJNETHORING PERFICICLES HERBICIDE DATA VALIDATION CHECKLIST - FORM A-4

PROJECT: / both Slow ERA	REVIEWER: 6	DATE: 6/9/93
LABORATORY: 5 - Culeix	CASE: 42 - 32,	SDG: 3410
SAMPLES/MATRIX: Sails BO	1KPio	
	/h	نى <u> </u>
	<u> </u>	

1. DATA PACKAGE COMPLETENESS

Review the data package for completeness and check off the items below. If any data review elements are missing contact the laboratory for submittal.

Data Package Item	Present?:	Yes	No	N/A
Case Narrative Data Summary		<u>/</u>	<u> </u>	
Chain of Custody Forms		/-		
Sample Analysis Request				
QC Summary		<i>j</i>		
Surrogate Recovery		<u>~</u> .		· —
MS/MSD Recovery			<u> </u>	See comment
Method Blank Summary		<u>~</u>		
Sample Data				
Sample Results		<u> </u>		
Chromatograms for all samples/extra				,
Quantitation sheets for all samples/ex				
Extraction data sheets for all samples				/-
Instrument time/run logs for all samp	oles/extracts			<u>v</u>
Standards Data		/		
Initial Calibration standard concentra		بك		
Initial Calibration summary of RRF/I		<u>~</u>		****
Chromatograms for all initial cal. sta		<u> </u>		
Quantitation sheets for all initial cal.		<u> </u>		 -
Instrument time/run logs for all samp				<u> </u>
Calibration standard traceability data				
Raw QC Data				
Blanks		./		
Laboratory Blank results		/		
Chromatograms for all labor	— — — — — — — — — — — — — — — — — — —			
Quantitation reports for all la		<u> </u>		
Matrix Spike/Matrix Spike Duplicate	es	/		
 769193 CIMS/MSD Results		1		
 Chromatograms		<u>V</u>		
Quantitation reports				

TT PLANTE TO GAT COMMING TO TATE OF				
Data Package Item	Present?:	Yes	No	N/A
Additional Data Moisture/% Solids data sheets Calculation formulae Instrument Run/Time Logs Chemist notebook pages Sample preparation sheets			7	
2. HOLDING TIMES				
Were all samples extracted within holding times?		Yes	No	N/A
Were all samples analyzed within holding times?		Yes	No	N/A
ACTION: If the extraction or analytical holding tim qualify all affected results as estimated (J for detects nondetects (R) and qualify all detects as estimated (J)	and UJ for nondetects).	•		•
3. INSTRUMENT CALIBRATION				
3.1 INITIAL CALIBRATION				
Was an initial calibration conducted prior to sample analysis?		Yes	No	N/A
Are all RSD values <20%?		Yes	No	N/A
ACTION: If the RSD criteria were not met, qualify nondetects).	all results as estimated	(J for de	etects and	d UJ for
3.2 CONTINUING CALIBRATION				
Have continuing calibrations been conducted at the proper frequency? RPDA 25 Are the RRFs within ±15% of the initial calibration	average RF?	Yes Yes	No No	N/A Comment: N/A
Are the RT values for the calibration compounds wire retention time windows?	thin the	Yes	No	N/A
ACTION: If the percent difference criteria or retent associated data as estimated (J for detects, UJ for no		not met,	qualify a	11
4. BLANKS				
4.1 LABORATORY BLANKS				
Has the laboratory analyzed at least one method blanthe sample batch?	nk per matrix in	Yes	No	N/A

See Comment 3

Are target compounds present in the laboratory blanks?

N/A

ACTION: Qualify all detected results in the samples that are < 5 times the amount in any laboratory blank as nondetects (U).

4.2 FIELD BLANKS

Are target compounds present in the field blanks?

Yes

ACTION: Qualify all detected results in the samples that are < 5 times the amount in any valid field blank as nondetects (U).

ACCURACY

5.1 SURROGATE RECOVERY

Are any surrogate recoveries out of specification?

N/A

Are any surrogates nondetected?

N/A

ACTION: Surrogate recoveries out of specification will require qualification of all associated data as estimated (J for detects and UJ for nondetects). Surrogate recoveries that are 0% will require qualification of all detects as estimated (J) and the rejection of all nondetects (R).

5.2 MATRIX SPIKE RECOVERY

Has the laboratory conducted a MS/MSD analysis per matrix for the sample group?

N/A

Are there calculation or transcription errors?

Are MS recoveries within specification?

N/A

ACTION: If MS/MSD analyses have not been conducted contact the laboratory for clarification. Review the MS/MSD recoveries in conjunction with other QC data such as surrogate recoveries and note the results in the validation narrative. If MS/MSD recoveries are out of specification and sample concentration is >5 times the spike concentration, no qualification is required, otherwise qualify positive results as estimated (J) in all samples if associated surrogates are also out of specification. The qualification shall only be done on samples of similar matrix as the MS/MSD samples. If it is determined from the review that only the spiked samples are affected by the low recoveries, qualify only the results for the spiked sample as described above. If it is determined from the review that out of specification MS/MSD recoveries are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

5.3 PERFORMANCE AUDIT SAMPLES

Are performance audit sample results within the acceptance limits?

Yes No

NIA

ACTION: Note the results of the performance audit samples in the validation narrative.

6. PRECISION

6.1 MATRIX SPIKE/MATRIX SPIKE DUPLICATES

Are there any calculation or transcription errors?

No

(N

Are the RPD values within specification?

Yes

Yes

No

ACTION: Review the MS/MSD results in conjunction with other QC data such as field duplicates and not the results in the validation narrative. If MS/MSD RPD values are out of specification and sample results are >5xCRQL qualify positive results as estimated (J). If it is determined from the review that out of specification MS/MSD results are indicative of systematic problems in the laboratory such as sample preparation or sample-specific matrix interferences this must be noted in the validation narrative along with the potential affect on the sample results.

6.2 FIELD DUPLICATES

Are the field duplicate RPDs acceptable?

Yes !

ACTION: Note the results of the field duplicate samples in the validation narrative.

6.3 FIELD SPLIT SAMPLES

Are the field split RPDs acceptable?

Yes

No

ACTION: Note the results of the field split samples in the validation narrative.

7. COMPOUND IDENTIFICATION AND QUANTITATION

7.1 COMPOUND IDENTIFICATION

26/9/93

row areficted

Are positive results within the retention time windows?

Yes

(N/À

Are positive results unaffected by interfering peaks?

Yes

(N/A)

ACTION: If positive results are not within the retention time windows qualify all detected results as nondetects as follows: If the misidentified peak is outside the retention time windows and no potential interferences are present, report the CRQL and if the misidentified peak interferes with the potential detection of a target peak then the reported value is the quantitation limit and the result is qualified as estimated (UJ).

7.2 REPORTED RESULTS AND QUANTITATION LIMITS

Has the laboratory reported sample quantitation limits within 5xCRQL levels?

(Yes

do.

N/A

Are there any calculation or transcription errors?

Yes (No

N/A

ACTION: If the results and quantitation limits are in error contact the laboratory for clarification and discuss in the validation narrative.

8. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?

(Yes)

No N/A

Were project specific data quality objectives met for this analysis?

(Yes

No

N/A

ACTION: Summarize all the data qualifications and complete the data validation narrative as specified in Section 10.0 of the data validation requirements.

COMMENTS (attach additional sheets as necessary):	
1 uto about performed an US a	unity is buttered
1 utoghory performed an LCS a equille (1818). Il corner were le	e Teviewed.
2. Me RPB new sudna (225)	Cimuts for
Jewrill othion, athornop all tompounds will be gue	us judividual
muy AA Me results will be suce	litiedas Tor
	`
with the exception of sulfo	more sulprophes)
3. The Novbyste recovery for the	Janyle BOTRVG
is 157% which is above the cov	that livets of
40-140% All results will be	
is also exceeded however fully	fet the cas
is also exceeded however fully	alog 164
Jest saugle Evalification	
4. De les recoveres are out sole ol 40-140 ces follows, with qua follows	· limits of
90-140 as follows, with goo	lification as
follows for the form	
Composed 20R	Qualification
- 4 Thopap 128	none
1 6 7-	<u> </u>
nuthing printlyon 296.7	uone
jeliorate 140.9	hore
- Konnel 148.4	noru
<u>Diazinon</u> 137.6	une
mlstar 2192	R
Laurapho 3/8.2	\mathcal{L}
welled Hzinopho 188,5	hine

HOLDING TIME SUMMARY - FORM B-1

SDG: 3410	REVIEWER:	() wis	ieis	DATE: 6/	9/93		PAGE <u>/</u> OF <u>/</u>			
COMMENTS: Overanophorphorphory Pesticides										
FIELD SAMPLE ID	ANALYSIS TYPE	/ DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER			
BOJKPG	OPPERT	11/2/93	11/9/99	11/25/92	7	15	plone			
				- 1	 					
				•						
										
)				
				 		·				

MEMORANDUM

TO: North Slope ERA Project QA Record

June 10, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: General Chemistry Analysis Data Validation Summary for 3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for anions, hexavalent chromium, and nitrate+nitrite as N. The sample was analyzed by the S-Cubed laboratory using routine laboratory protocols. The sample identification number, collection date, and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1993) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. Goals for precision were met.

Accuracy. Goals for accuracy were met with the exception of the matrix spike recovery for chloride as noted in "Minor Deficiencies".

Sample Result Verification. All sample results were supported in the raw data with no data correction necessary.

Detection Limits. Detection limit goals were met for all analyses.

Completeness. The data package was complete for all requested analyses. A total of one (1) sample was validated in this data set with a total of nine (9) determinations reported. Out of the nine (9) determinations reported, all determinations were deemed valid which results in a completeness of 100 percent. This completeness percentage meets the work plan objectives of 90%.

MAJOR DEFICIENCIES

There were no major deficiencies identified during validation.

MINOR DEFICIENCIES

Holding Time

The holding time of 2 days was exceeded for ortho-phosphate; therefore, the sample result was qualified as estimated (J).

Matrix Spike

The matrix spike recovery for chloride was 10.2%. Therefore, the sample result was qualified as estimated (J for detects, UJ for non-detects).

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF INORGANIC DATA REPORTING QUALIFIERS

- B Indicates the analyte was analyzed for and detected. The value reported is less than the contract required quantitation limit (CRQL) but greater than the instrument detection limit (IDL). The data are usable for decision making purposes.
- U Indicates the analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- BJ Indicates the analyte was analyzed for and detected at a concentration greater than the IDL but less than the CRQL. The associated value is estimated due to a deficiency identified during data validation. The data are usable for decision making purposes.
- J Indicates the analyte was analyzed for and detected at a concentration greater than the CRQL. The associated value is estimated due to a deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the analyte was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the analyte was analyzed and detected; however, due to an identified quality control deficiency the data are unusable.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

DATA QUALIFICATION SUMMARY - FORM B-7

SDG: 34/0	REVIEWER:	DATE: 6/10/93	PAGE / OF /		
COMMENTS: W	<u>uims</u>				
COMPOUND	QUALIFIER SAMPLES AFFECTED		REASON		
P04	Jor UJ	BOFKPG	holding, time exceed		
PO4 Chloride	J	BOFKPG	MS 9012 = 10,2%		
<u></u>					
			•		
	·				

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

.;

DATA REVIEWER: ON 12/02/92 S-CUBBD SABORATORY: PROJECT REVIEWER: Alle CLIENT: 32359-51 CHARGE #: 92-359 PROJECT: DATE SAMPLED: 11-02-92 3410 LOT #: 11-05-92 DATE RECEIVED: AHE34108 FILE #: 11-09-92 PREP DATE: ANT1123 DISK #: 11-13-92 DATE ANALYZED: 300.0 METHOD HO.: SAMPLE TYPE: SOIL KG/KG UNIT:

									R 18	
LAB IP	+	P	: Cl	но2	Br	ноз	P04 !	\$04	O.K.	·
13410-01	+ !	1.96	10.9 2	4 + W	+0.1 <0.5	13.0	1.43 丁	-27T 311	1.8	
241 0-011 @	 1		هييند ا		! !	; ;		241600	: +	!
; ;	! !		!	! +	 	! }		 	} +	! +
 	! +		 	t t	! +	 	} }	}	 	} +
	; +		; ;	! {	! +	! +	! +	! +	! +	
1 1 1			¦ .+	! +	! +	 +	} +	 	 	! !
	; 		!	 	! .+	; +	! +	; +	! +	; ;

SO4 result was required 10 x dilution due to high concentration level. All other anions were reported on straight analysis run. All Osc requirement were met. The sample was leached (20 gm into 100 ml) into DI type I water pricer to analysis.

96/10/93

S - CUBED

Trace Inorganics Report

Client: WHC

Project: 92-231

11/02/92

Review:

Sampling Date:

Receipt. Date: 11/05/92

Analyte: CRVI

S - CUBED Sample No.	M U T N	Client Sample ID	{ Concentration	MDL
3410-01	S A	B07KP6	; < MDL	0.133
		-		
	1 1 1			
				
				· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		
·····				
	+ + + +			
	1 1 1		1	
			1	
<u></u>	1 1			

Method Detection Limit: 5.000 ug/L Preparation Method: SW7196 Analytical Method: SW7196 11/09/92

Preparation Date: Analysis Date:

11/11/92

UN = Units = (A=mg/kg

B=ug/L C=mg/L) MT = Matrix = (S=Soil

Comments: requirement were excellent. prior to anal

301

S - CUBED

Trace Inorganics Report

Client: WHC Project: 92-231 Analyst: EA

Sampling Date: 11/02/92

Review : ___

Receipt. Date: 11/05/92

Analyte: NO2/NO3

- CUBED mple No.	M U T N	Client Sample ID	Concentration as·N	MDL
3410-01		07KP6	3.34	0.530
· · · · · · · · · · · · · · · · · · ·				
			1	
		_		
		· · · · · · · · · · · · · · · · · · ·		
	1 1		· · · · · · · · · · · · · · · · · · ·	
	1			
	1 1			
				··
	1 1		<u> </u>	
			1	
	1			

Method Detection Limit: 0.100 mg/L

Preparation Method:

353.3

Analytical Method:

353.3

Preparation Date:

11/09/92

Analysis Date:

11/11/92

UN = Units = (A=mg/kg

C=mg/L) B=ug/L

56/10/93 MT = Matrix = (S=Soil

Comments: urement were within the control limit

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

WET CHEMISTRY DATA VALIDATION CHECKLIST - FORM A-7

PROJECT: NOVYH Slope ERA	REVIEWER:	DATE	: 6//	0/93
LABORATORY: 5- Puber	CASE: 92-321	SDG:	34/	Ó
SAMPLES/MATRIX: Soil BOAK!	² le			
			,	
1. DATA PACKAGE COMPLETENESS				
Review the data package for completeness and contact the laboratory for s		•	a reviev	v
Data Package Item	Present?:	Yes	No	N/A
Case Narrative Cover Page		_	V	
Traffic Reports/Chain-of-Custody		/		
Sample Analysis Data Report Forms		<u> </u>		
Standards Data		\underline{v}		
QC Summary Blanks Summary Report Forms		1/		
Spike Sample Recovery Report Forms		V,		
Duplicate Sample Analysis Report Form		\		
Laboratory Control Sample Report Form Raw Data	15			
Ion Chromatograph Chromatograms		<u>12</u> 2		
TOC and TOX Instrument Printouts				V
Laboratory Bench Sheets Additional Data		\sim		
Laboratory Sample Preparation Logs		/		
Instrument Run Logs		$\overline{\mathcal{L}}$		
Internal Laboratory Chain-of-Custory		$\overline{\checkmark}$	7	i wolf &
Percent Solids Analysis Records			1/	
Reduction Formulae Chemist Notebook Pages			<u></u>	_
2. HOLDING TIMES				
Were all samples analyzed within holding times?	?	Yes	(No)	N/A

Action: If any holding times were exceeded qualify all affected results as estimated (J for detects and UJ for nondetects).

3. INITIAL CALIBRATIONS

Were all instruments calibrated daily, each set-up time and were the proper number of standards used?

No N/A

Are the correlation coefficients ≥ 0.995 ?

No N/A

Was a balance check conducted prior to the TDS analysis?

Yes

No

No

Was the titrant normality checked?

Yes

ACTION: Qualify all data as unusable (R) if reported from an analysis in which the above criteria were not met.

4. INITIAL AND CONTINUING CALIBRATION VERIFICATION

Have ICV and CCV been analyzed at the proper frequency?

No

N/A

Are ICV and CCV percent recoveries within control?

N/A

Are there calculation errors?

N/A

ACTION: Qualify all affected data in accordance with the validation requirements.

LABORATORY BLANKS

Are target analytes present in the laboratory blanks?

N/A

ACTION: Qualify all associated sample results for any analyte < 5 times the amount in any laboratory blank as nondetected (U) and list the affected samples and analytes below.

6. FIELD BLANKS

Are target analytes present in the field blanks?

Yes

ACTION: Qualify all sample results for any analyte < 5 times the amount in any valid field blank as nondetected (U).

7. MATRIX SPIKE SAMPLE ANALYSIS

Are spike recoveries within the acceptance limits?

bliolarge comment 1

ACTION: If the sample concentration exceeds the spike concentration by a factor of 4 or more, and spike recoveries are outside the acceptance limits, no qualification is necessary. If spike recovery is outside the control limits and the sample results are > CRQL, qualify the data as estimated (J). If the spike recovery is <30% and the sample results are less then the IDL qualify the data as unusable (R).

8. LABORATORY CONTROL SAMPLE

Are percent recoveries within the acceptance limits?

N/A

Are there calculation errors?

N/A

ACTION: Qualify the affected results according to the following requirements:

AQUEOUS LCS - Qualify as estimated (I), all sample results > IDL, for which the LCS %R falls within the range 50-79% or > 120%. Qualify as estimated (UJ), all sample results < IDL, for which the LCS falls within the range of 50-79%. Qualify as unusable (R) all sample results, for which the LCS %R <50%.

SOLID LCS - Qualify as estimated (J), all sample results > IDL for which the LCS %R is outside the established control limits. Qualify as estimated (UJ), all sample results < IDL for which the LCS %R are lower than the established control limits.

PERFORMANCE AUDIT ANALYSES

Are the performance audit sample results within the acceptance limits?

Yes

ACTION: Note the results of the performance audit samples in the validation narrative.

10. DUPLICATE SAMPLE ANALYSIS

Are RPD values within the acceptance limits?

See comment 2 S) No N/A

Action: Qualify the results for all associated samples of the same matrix as estimated (J) if the RPD falls outside the acceptance limits.

11. FIELD DUPLICATE SAMPLES

Do RPD values exceed the acceptance limits?

Yes

ACTION: Note the results of the field duplicate samples in the validation narrative.

12. FIELD SPLIT SAMPLES

Do RPD values exceed the acceptance limits?

Yes

ACTION: Note the results of the field split samples in the validation narrative.

13. ANALYTE QUANTITATION AND DETECTION LIMITS

Have results been reported and calculated correctly?

Yes

No N/A

Are instrument detection limits below the CRDL?

Yes

No N/A

Action: If analyte quantitation is in error, contact the laboratory for explanation. If errors or deficiencies can not be resolved with the laboratory, qualify associated data as unusable (R).

14. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?

No N/A

Were project specific data quality objectives met for this analysis?

No N/A

ACTION: Summarize all the data qualifications and complete the data validation narrative as specified in Section 10.0 of the data validation requirements.

MMENTS (attach additional sheets as necessary):
1. The MG secoren for Chrovide was 10.32 for sample BD7KPC. The Sample result will be qualified as assimated, To
Par remarke BD7KDCo. The rawale result
will be autilied as other etad. T
you we grouped as giff/waster, so
I me results for CVII for BOTKPE Were
2 the results for CVVI for BOTKP16 were < MDl for both sawple and replicate
The RPD was reported as 30.9, however, the
Correct AD is not calculately Spice the
results were < MDl His RPD is OK.
The state of the s
· · · · · · · · · · · · · · · · · · ·
·
·

MEMORANDUM

TO: North Slope ERA Project QA Record

June 11, 1993

FR: Christina Jensen, Golder Associates Inc.

RE: Inorganic Analysis Data Validation Summary for 3410-SCU-080

INTRODUCTION

This memo presents the results of data validation on data package 3410-SCU-080 consisting of one soil sample submitted for inorganics analysis. The sample was analyzed by the S-Cubed laboratory using CLP protocols. The sample identification, collection date and sample media are described in the following table.

SAMPLE ID	SAMPLE DATE	MEDIA
B07KP6	11/02/92	SOIL

Data validation was conducted in accordance with the WHC statement of work (WHC 1993) and validation procedures (Bechtold 1992). Attachments 1 through 4 to this memo provide the data validation supporting documentation and a summary of the validated results.

DATA QUALITY OBJECTIVES

Precision. Goals for precision were met with the exception of selenium GFAA duplicate injection performance as noted in "Minor Deficiencies". The precision could not be evaluated based on matrix spike (MS) and matrix spike duplicate (MSD) results or laboratory duplicate results because the laboratory did not analyze these samples.

Accuracy. The laboratory did not analyze an MS or MSD. A laboratory control sample was analyzed and evaluated for accuracy with deficiencies noted in "Minor Deficiencies".

Sample Result Verification. All sample results were supported in the raw data with no data correction necessary.

Detection Limits. Detection limit goals were met for all analyses.

Completeness. The data package was complete for all requested analyses. A total of one sample was validated in this data set with a total of 23 determinations reported. Out of the 23 determinations reported, all determinations were deemed valid which results in a completeness of 100 percent. This completeness percentage meets the work plan objectives of 90%.

MAJOR DEFICIENCIES

There were no major deficiencies identified during data validation.

MINOR DEFICIENCIES

GFAA Duplicate Injections

The relative standard deviation (%RSD) for selenium exceeded the QC limit of 20%. Therefore, the result for sample B07KP6 was qualified as estimated (J for detects, UJ for non-detects).

REFERENCES

WHC, 1993, Westinghouse Hanford Company, North Slope ERA Data Validation, Statement of Work, Revision 0, May 1993. Westinghouse Hanford Company, Richland, Washington.

Bechtold, 1992, Westinghouse Hanford Company, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, 1992. Westinghouse Hanford Company, Richland, Washington.

ATTACHMENT 1 GLOSSARY OF DATA REPORTING QUALIFIERS

GLOSSARY OF INORGANIC DATA REPORTING QUALIFIERS

- B Indicates the analyte was analyzed for and detected. The value reported is less than the contract required quantitation limit (CRQL) but greater than the instrument detection limit (IDL). The data are usable for decision making purposes.
- U Indicates the analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory. The data are usable for decision making purposes.
- UJ Indicates the analyte was analyzed for and not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the sample quantitation limit. The data are usable for decision making purposes.
- BJ Indicates the analyte was analyzed for and detected at a concentration greater than the IDL but less than the CRQL. The associated value is estimated due to a deficiency identified during data validation. The data are usable for decision making purposes.
- J Indicates the analyte was analyzed for and detected at a concentration greater than the CRQL. The associated value is estimated due to a deficiency identified during data validation. The data are usable for decision making purposes.
- UR Indicates the analyte was analyzed for and not detected; however, due to an identified quality control deficiency the data are unusable.
- R Indicates the analyte was analyzed and detected; however, due to an identified quality control deficiency the data are unusable.

ATTACHMENT 2 SUMMARY OF DATA QUALIFICATIONS

DATA QUALIFICATION SUMMARY - FORM B-7

REVIEWER: 45 WYANNON QUALIFIER	DATE: 6/9/93	PAGE / OF /
QUALIFIER	SAMPLES	
	AFFECTED	REASON
TorUT	BOTKPLO	GFAA 70 SERD
		`
		•
·		
i		
· · · · · · · · · · · · · · · · · · ·		
	Torus	

ATTACHMENT 3 AS QUALIFIED DATA SUMMARY

U.S. EPA - CLP

. .

1.54

1 INORGANIC ANALYSES DATA SHEET

12177	CAMBLE	MO
EPA	SAMPLE	NU.

		INORGANIC A	NALYSES DATA S	HEET	.—	
Lab Name: S_CU	BED		Contract: 32	2359-51		3410-01
Lab Code: S3	Cas	se No.: 922	231 SAS No.:	:	_ sd	G No.: 3410
Matrix (soil/wa	ater): SOIL	_		Lab Sa	mple I	D: 3410-01
Level (low/med): LOW			Date F	eceive	d: 11/05/92
% Solids:	_94.:	3				
Co	ncentration	Units (ug,	/L or mg/kg dry	y weigh	it): MG	KG D
	CAS No.	Analyte	Concentration	C Q	м	سٺ
	7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-95-4 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.64 16100 21.0 14.6 27.1 27800 29.9 7700 571 0.11 20.8 2330 6.4 7.0 539 6.4	B B C C C C C C C C C C C C C C C C C C		YJ
Color Before:	****	Clari	ty Before:		Tex	kture:
Color After:		Clari	ty After:			ifacts:
Comments: B07KP6				56/9/	43	

FORM I - IN

7/88

ATTACHMENT 4 DATA VALIDATION SUPPORTING DOCUMENTATION

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST - FORM A-6

PROJECT: 18441 Scone ERA	REVIEWER: 6	DATE: 12/9/93		
LABORATORY: 5 - Cubed	CASE: 92-321	SDG: 3410		
SAMPLES/MATRIX: Grail BOJKP4				
	•	•		

1. COMPLETENESS AND CONTRACT COMPLIANCE

Review the data package for completeness and check off the items below. If any data review elements are missing contact the laboratory for submittal of the omitted data.

Data Package Item	Present?:	· Yes	No	N/A
Case Narrative				ميض
Cover Page		V		
Traffic Reports		1		
Sample Data	•			
Inorganic Analysis Data Sheets		<u></u>		-
Standards Data		· · ·		
Initial and Continuing Calibration Verification CRDL Standard for AA and ICP		1		
QC Summary	•			
Blanks				
ICP Interference Check Summary		1/		
Spike Sample Recovery			V	
Post-Digestion Spike Sample Recovery			\overline{Z}	
Duplicate			$\overline{\mathbf{z}}$	_
Laboratory Control Sample		<u> </u>		
Standard Addition Results			1/	
ICP Serial Dilutions		פולפומיני		
Instrument Detection Limits				
ICP Interelement Correction Factors		₩.		
ICP Linear Ranges				
Preparation Log		\overline{Z}		<u> </u>
Analysis Run Log		V		
Raw Data				<u> </u>
ICP Raw Data				
Furnace AA Raw Data				
Mercury Raw Data	•	V		
Cyanide Raw Data	•			V
Additional Data				
Internal laboratory chain-of-custody			<i>J</i>	
Laboratory Sample Preparation Records		<u> </u>		

Data Package Item	Present?:	Yes	No	N/A
Percent Solids Analysis Records Reduction Formulae			7	
Instrument Run Logs Chemist Notebook Pages	•	<u> </u>	2	
2. HOLDING TIMES				
Have all samples been analyzed within holding times?		Yes	No	N/A
ACTION: If any holding times have been exceeded qualify a detects and UJ for nondetects).	ill affected resu	<u>්</u> ය හ සැ	imated (J for
3. INITIAL CALIBRATIONS				
Were all instruments calibrated daily, each set-up time and were the proper number of standards used?		Ye	No	N/A
Are the correlation coefficients ≥ 0.995?		Yes	No	N/A
Was a midrange cyanide standard distilled?		Yes	No	NIA
ACTION: Qualify all data as unusable if reported from an a calibrated or was calibrated with less than the minimum num sample results > IDL as estimated (J) and results < IDL as ecoefficient is < 0.995 or the laboratory did not distill the min	ber of standard stimated (UJ),	is. Qualif	y associ rrelation	ated
4. INITIAL AND CONTINUING CALIBRATION VERIFI	CATION			
Are ICV and CCV percent recoveries within control?		Yes	No	N/A
Are there calculation errors?		Yes	No	N/A
ACTION: Qualify all affected data in accordance with Sectional culture are noted, contact the laboratory for clarific		alidation	iednjie	ments. I
5. ICP INTERFERENCE CHECK SAMPLE		_		
Has an ICS sample been analyzed at the proper frequency?		Yes	No	N/A
Are the AB solution %R values within control?		Yes	No	N/A
Are there calculation errors?		Yes	No	N/A

ACTION: Qualify all affected data in accordance with Section 8.3 of the validation requirements. If calculation errors are noted, contact the laboratory for clarification.

LABORATORY BLANKS

Are target analytes present in the laboratory blanks?

See comment 1

ACTION: Qualify all associated sample results for any analyte <5 times the amount in any laboratory blank as nondetected (U). If analyte concentrations in the blank are > CRDL or below the negative CRDL, verify the laboratory has redigested and reanalyzed associated samples with analyte concentrations < 10 times the blank concentration. If the laboratory has not redigested and reanalyzed the samples, note in the validation narrative.

7. FIELD BLANKS

Are target analytes present in the field blanks?

ACTION: Qualify all sample results for any analyte <5 times the amount in any valid field blank as nondetected (U).

8. MATRIX SPIKE SAMPLE ANALYSIS

Are spike recoveries within the control limits?

ACTION: Qualify the affected sample data according to the following requirements:

If spike recovery is > 125% and sample results are < IDL no qualification is required. If spike recovery is > 125% or <75% qualify all positive results as estimated (J). If spike recovery is 30% to 74% qualify all nondetects as estimated (UI). If spike recovery is <30%, reject all nondetects (R). If the field blank has been used for spike analysis, note in the validation narrative.

9. LABORATORY CONTROL SAMPLE

Are percent recoveries within the acceptance limits?

Are there calculation errors?

N/A

ACTION: Qualify the sample data according to the following requirements:

AQUEOUS LCS - Qualify as estimated (I), all sample results > IDL, for which the LCS %R falls. within the range 50-79% or > 120%. Qualify as estimated (UI), all sample results < IDL, for which the LCS falls within the range of 50-79%. Qualify as unusable (R) all sample results, for which the LCS %R <50%.

SOLID LCS - Qualify as estimated (I), all sample results > IDL for which the LCS result is outside the established control limits. Qualify as estimated (UD, all sample results < IDL for which the LCS %R are lower than the established control limits.

10. PERFORMANCE AUDIT ANALYSES

Are the performance audit sample results within the acceptance limits?

Yes No N/A

ACTION: Note the results of the performance audit sample analyses in the data validation narrative.

11. DUPLICATE SAMPLE ANALYSIS

secon non

Are RPD values acceptable?

res No (N/)

ACTION: Qualify the results for all associated samples of the same matrix as estimated (I) if the RPD results fall outside the appropriate control limits. If field blanks were used for laboratory duplicates, note in the validation parrative.

12. ICP SERIAL DILUTION

Are the serial dilution results acceptable?

Yes No N/A

Is there evidence of negative interference?

es (No N/A

ACTION: Qualify the associated data as estimated (I) for those analytes in which the %D is outside the control limits. If evidence of negative interference is found, use professional judgment to qualify the data.

13. FIELD DUPLICATE SAMPLES

Do the RPD values exceed the control limits?

es No NIA

ACTION: Note the results of the field duplicate samples in the validation narrative.

14. FIELD SPLIT SAMPLES

Do the RPD values exceed the control limits?

Yes No (N/A

(Yaş

No

N/A

ACTION: Note the results of the field split samples in the validation narrative.

1516. FURNACE ATOMIC ABSORPTION QUALITY CONTROL

Were analytical spike recoveries within the control limits?

(Yes Do all applicable analyses have duplicate injections? · No N/A Are applicable duplicate injection RSD values within control? (No Yes N/A If no, were samples rerun once as required? Yes (No) N/A Does the RSD for the rerun fall within the control limits? No N/A Yes

If no, were MSA analyses performed when required?	Yes	No	NIA
Are MSA correlation coefficients ≥0.995?	Yజ	No	NIA
If no, was a second MSA analysis performed?	Yes	No	NIA

ACTION: If duplicate injections are outside the acceptance limits and the sample has not been reanalyzed or the reanalysis is outside the acceptance limits, qualify the associated data as estimated (I for detects and UI for nondetects). If the analytical spike recovery is <40% qualify detects as estimated (I). If the analytical spike recovery is <10%, pullify all nondetects as estimated (UI) and if the analytical spike recovery is <10%, reject all nondetects (R). If the sample absorbance is <50% of the analytical spike absorbance and the analytical spike recovery is <35% or >115%, qualify all results as estimated (I for detects and UI for nondetects). If method of standard additions (MSA) was required but was not performed, the MSA samples were spiked incorrectly, or the MSA correllation coefficient was <0.995, qualify the associated detected results as estimated (I).

17. ANALYTE QUANTITATION AND DETECTION LIMITS

Have results been reported and calculated correctly?	Yes	No	N/A
Are results within the calibrated range of the instruments and within the linear range of the ICP?	Ya	No	N/A
Are all detection limits below the CRQL?	Yes	No	N/A

Action: If analyte quantitation is in error, contact the laboratory for explanation. If errors or deficiencies can not be resolved with the laboratory, qualify associated data as unusable (R).

18. OVERALL ASSESSMENT AND SUMMARY

Has the laboratory conducted the analysis in accordance with the analytical SOW?	Yes	No	N/A
Were project specific data quality objectives met for this analysis?	Yes	No	N/A

ACTION: Summarize all the data qualifications and complete the data validation narrative as specified in Section 10.0 of the data validation requirements.

COMMENTS (anach additional sheets as necessary):
1. lead and asserve more detented in the laid-
pièr stank at . 7 and 1.53 mg//kg. 100- duta qualification was done on associated Samples because the painter result as <5 x the blank values.
duta qualification was done on associated
Samples because the painte result as
< 5 x the blank values.
<u> </u>
2. The laboratory did not avalore an
2. The laboratory did just avaluate an instance. The LCS will be reviewed.
3. No LCS 9, R was 139.5 (1" mits 80-120) for Seleviou
HOWWIG Me Silenium value is & ISL EN
no qualification is necessary.
4. The letoratory and not pleform a displicate inalyses. No gralification was done because
malyres to qualification was done because
of thes.
·

HOLDING TIME SUMMARY - FORM B-1

SDG: 3410	REVIEWER:		W	DATE: Le	19/93		PAGE_/_OF_/_
COMMENTS:	Thorage	nice					
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
BOTKPG		1/2/92	11/12/92	11/47/92	- 10	5	pone
BOTKEGE	1+1+	11/2/92	11/11/92	91/10/2	9	5	/None
BO71496	Hg	11/2/92		H 11/13/42	- 11	0	poré
	<i>"</i>		·	036/4/42			
				, 			
				,			
					1.7		·
		<u>,</u>					

BLANK AND SAMPLE DATA SUMMARY - FORM B-3

COMMENTS: SAMPLE ID COMMENTS:	COMPOUND ASSELIC	1	RESULT	α	RT	UNITS	- 12			
				α	RT	LIMITS	-42	i		
BOKPL	arsenic Und					014113	5X RESULT	10X RESULT	SAMPLES QUALIFICATION OF AFFECTED	
	lead		07			rug/kéz	3.5		butkP6	1961/187 H 1167
			1.58			mille	7.9		BUTKPL	H Nor
	·····					" 1				
							[
										
Ì										
										
	······································									·
								·		
										'
										
	·									
	· · <u>· · · · · · · · · · · · · · · · · </u>									

Ψ